
JDJ Focus Feature: Extending VRML 2 with Java Bruce Campbell
When and how to use EAI in creating VRML 2 Worlds 8

Integrating JavaScript into VRML: Guy Huggins
Glow Shapes Glow An introduction to VRML programming 18

How to Create and Use a Java Wizard Class Donald Fowler
The preferred UI method for guiding users 28

Adding a Middle Tier to Your Java Code part 2 Sean Rhody
Server Side Coding: Building a simple Java component 34

Java Web Server and Dynamic Page Compilation Robert Tiffany
JavaServer page technology introduces productivity gains 46

Java Techniques: How to Make Flexible Threads Philip Rousselle
A robust approach to thread management & Mike McNally 50

Widget-izing Java’s Graphic Interface Components Daniel Dee
Technologies that will determine Java’s role in computing 54SYS-CON

PUBLICATIONS

Under the Sun

Java Multithreading
by David Nelson-Gal

& Devang Shah pg.40

Product Reviews
ProtoView JSuite

by David Jung pg.43

The Grind
Avoiding the Web
Application Front

End Trap
by Java George pg.66

Java News

RogueWave
Ships StudioJ

.....
KAI Announces
Debugging Tool

pg.62

Make My PC
JavaReady

by Rick Ross pg.5

CORBACorner
OODBMS & CORBA
by David Knox pg.56

Volume:3 Issue:6JavaDevelopersJournal.com

SPECIAL FOCUS: VRML & JAVA
TM

U.S. $4.99 (Canada $6.99)

SPECIAL FOCUS: VRML & JAVASPECIAL FOCUS: VRML & JAVA

KALEIDOSCO

KA
LE

ID
O

KALEIDO

KALEIDOSCO
KA

LE
ID

O

KALEIDO

2 • VOLUME: 3 ISSUE: 6Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Full Page Ad

3VOLUME: 3 ISSUE: 6 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Full Page Ad

4 • VOLUME: 3 ISSUE: 6Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Full Page Ad

5VOLUME: 3 ISSUE: 6 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

EDITORIAL ADVISORY BOARD
Ted Coombs, Bill Dunlap, Allan Hess,

Arthur van Hoff, Brian Maso, Miko Matsumura,
Kim Polese, Richard Soley, David Spenhoff

Art Director: Jim Morgan
Executive Editor: Scott Davison
Managing Editor: Anita Hartzfeld
Associate Editor: M’Lou Pinkham

Editorial Assistant: Carolyn Emmett
Technical Editor: Bahadir Karuv
Visual J++ Editor: Ed Zebrowski

Visual Café Pro Editor: Alan Williamson
Product Review Editor: Jim Mathis

Games & Graphics Editor: Eric Ries
Tips & Techniques Editor: Brian Maso

Java Security Editor: Jay Heiser

WRITERS IN THIS ISSUE
Bruce Campbell, Daniel Dee, Donald Fowler, Guy Huggins,
David Jung, George Kassabgi, David Knox, Mike McNally,
David Nelson-Gal, Sean Rhody, Rick Ross, Philip Roussell,

Devang Shah, Robert Tiffany, James Walker

SUBSCRIPTIONS
For subscriptions and requests for bulk orders,

please send your letters to Subscription Department

Subscription Hotline: 800 513-7111
Cover Price: $4.99/issue.

Domestic: $49/yr. (12 issues) Canada/Mexico: $69/yr.
Overseas: Basic subscription price plus air-mail postage

(U.S. Banks or Money Orders). Back Issues: $12 each

Publisher, President and CEO: Fuat A. Kircaali
Vice President, Production: Jim Morgan
Vice President, Marketing: Carmen Gonzalez

Advertising Manager: Claudia Jung
Advertising Assistant: Erin O’Gorman

Advertising Intern Jaclyn Redmond
Accounting: Ignacio Arellano

Senior Designer: Robin Groves
Designer: Alex Botero

Webmaster: Robert Diamond
Senior Web Designer: Corey Low

Customer Service: Rae Miranda
Sian O’Gorman
Paula Horowitz

EDITORIAL OFFICES
SYS-CON Publications, Inc.

39 E. Central Ave., Pearl River, NY 10965
Telephone: 914 735-1900 Fax: 914 735-3922

Subscribe@SYS-CON.com
JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944) is

published monthly (12 times a year) for $49.00 by SYS-CON
Publications, Inc., 39 E. Central Ave., Pearl River, NY 10965-2306.

Application to mail at Periodicals Postage rates is pending at
Pearl River, NY 10965 and additional mailing offices.

POSTMASTER: Send address changes to:
JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,

39 E. Central Ave., Pearl River, NY 10965-2306.

© COPYRIGHT
Copyright © 1997 by SYS-CON Publications, Inc. All rights reserved. No part of this
publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopy or any information storage and retrieval system,

without written permission. For promotional reprints, contact reprint coordinator.
SYS-CON Publications, Inc. reserves the right to revise, republish and authorize its

readers to use the articles submitted for publication.

ISSN # 1087-6944

Worldwide Distribution by
Curtis Circulation Company

739 River Road, New Milford NJ 07646-3048Phone: 201 634-7400

BPA Membership Applied For
Java and Java-based marks are trademarks or registered trademarks of

Sun Microsystems, Inc. in the United States and other countries.
SYS-CON Publications, Inc. is independent of Sun Microsystems, Inc.

SYS-CON
PUBLICATIONS

There’s one form of power that is
almost universally recognized in our soci-
ety, the power of consumer spending. This
is at the heart of all commerce, and any-
body who tries to tell you otherwise must
have something to sell you. I read today
that more than 45 million American homes
now have computers, and I’m sure that the
number of computers used in businesses
far exceeds that. I doubt that anyone will
argue the fact that a lot of technology-dri-
ven consumer spending power is at work
in our economy.

As a software developer you probably
have significant influence
over where some of this
spending power is direct-
ed. The Java Lobby has
started a new initiative in
which you can exercise
some of your influence to
achieve a positive, proJava
outcome. This initiative is
called the “JavaReady PC
Project,” and you can learn
all about it from the Java Lobby Web site
at http://www.javalobby.org/javaready.

The “JavaReady PC Project” is a simple
idea that does not depend on trust-
busters, the courts or anything more com-
plicated than your willingness to relate
your support for Java to your own con-
sumer spending decisions and to those
that you influence. In short, you can help
promote Java by favoring vendors that
support Java. If computer resellers believe
that supporting Java will give them an
edge in their intensely competitive busi-
ness, then they will definitely start sup-
porting Java.

It’s very easy for computer manufac-
turers to preload the hard drives of new
computers with software that will help
ensure a successful Java experience for
their customers, and the required soft-
ware is ABSOLUTELY FREE! If ever I heard
of a win-win proposition, then this has got
to be it. Savvy computer manufacturers
install free Java software on the comput-
ers they sell, and that software makes
those computers more attractive from
your point of view as a consumer.

Now I know that some of you may be
disappointed that this initiative does not
involve any hot-headed accusations, name
calling or other high-profile conflict of the
sort that has become so common in the
Java space. I apologize, and no doubt the
mayhem will soon continue. This is an
opportunity, however, for each and every
one of us to make a difference by quietly
leveraging the economic power that we
control. It’s not a matter of religion, nor is
it a matter of which major company we
might prefer to dominate the technology
landscape. Instead, it is a simple and clear

way to cast an economic
vote for Java - a vote that will
not be ignored.

So, if you want to sup-
port Java, then look for the
JavaReady logo on the next
PC you consider purchasing,
and don't be afraid to speak
up if you don't see this logo.
Ask your preferred vendor to
support Java by making their

PC’s JavaReady - and let them know that
they may not remain your preferred ven-
dor for long if they don’t. It is so painless-
ly easy for vendors to make their PC’s
JavaReady that I can’t think of any good
reason why they wouldn’t want to comply
in order to win your business. The soft-
ware is free, the Java Lobby has made it
simple for them to get this free software,
and they will save you unnecessary down-
loading time by pre-installing genuine,
compatible Java before they ship your
new system. Like many good ideas, this
one is really simple - but it all depends on
you.

Tell your friends, your family, your col-
leagues, tell everyone – but most impor-
tant please tell your vendor “Make my new
PC JavaReady!”

About the Author
Rick Ross is the President and founder of the Java
Lobby (www.Javalobby.org), which currently has
more than 17,700 members. He is also President of
Activated Intelligence and can be reached at
rick@activated.com.

Make My
PC JavaReady!

GUEST EDITORIAL

Rick Ross

6 • VOLUME: 3 ISSUE: 6Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Full Spr

7VOLUME: 3 ISSUE: 6 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

read Ad

Java DEVELOPER’S Journal

Extending

VRML 2
with Java

Extending

VRML 2
with Java

Extending

VRML 2
with Java

by Bruce Campbell

FOCUS ON VRMLFOCUS ON VRML

Java DEVELOPER’S Journal

There is no doubt that Java holds
tremendous potential in bringing
sophisticated behaviors and net-
working to VRML 2 worlds. The
debate is over how to add the Java
and how much control the Java
should have over the VRML.There are
two approaches to using Java to
extend VRML 2 worlds which have
been popularized by VRML technolo-
gists. A third approach, which will
allow programmers to load a VRML 2
file directly into a Java 3D API and
manipulate worlds completely in
Java, is just on the horizon.This arti-
cle looks at the potential of the
External Authoring Interface (EAI),
reviews when best to use the EAI,
shows how to use the EAI and pro-
vides a complete example of virtual

kaleidoscope application which
is appropriate for the EAI.

The
external

authoring
interface explored

10 • VOLUME: 3 ISSUE: 6Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

To me, VRML has two distinct purposes:
To provide a pleasing architecture to 3D
cyberspace and to provide educational and
entertaining things to do within the
confines of that architecture. Con-
sider a virtual pool hall. VRML 1,
as a standard, provides all the
tools necessary to build an
attractive and functional bil-
liards room complete with
marble floors, colorful walls,
impressive artwork, cozy
lighting and smoky haze.

But, visiting a virtual bil-
liards parlor eventually loses
its charm if there are no bil-
liards to play. So, VRML 2 pro-
vides the context within which balls,
racks, cues and chalk can be created and
manipulated. Sensors, Timers, Interpola-
tors, ROUTES and VRMLscript provide a
primitive interface for making a pool hall
respond to a virtual visitor’s actions. But, as
this article discusses, Java provides a more
flexible yet more complicated tool for mak-
ing a pool table come to life. Interpolators
are great, but they must be pre-loaded with
all of the possible behaviors that might take
place in a world without the help of a pro-
gramming language.

I enjoy creating visual 3D objects,
embedding their physics and letting them
interact without any additional human
intervention. Consider 16 billiard balls
behaving naturally in response to a single
human-initiated event: a cue stick striking a
cue ball. That’s great stuff. Java makes such
self-responding worlds possible. If you
believe in the ability of Java to make your
worlds come to life, you are halfway to mak-
ing it happen. To get three-quarters of the
way there, you have to choose how to add
Java to your world. Then, of course, you
have to learn how to program using Java.

I have given a lot of thought about how
to add Java to my worlds. VRML gives us a
new toy we have never had before: The abil-
ity to share visual 3D objects through Web
servers located all around the planet.
Although as planetary citizens we have
barely taken advantage of this opportunity,
it would be nice to continue to keep the
dream alive and place Java code within the
confines of each VRML object. The VRML 2
standards committee continues to pursue
an approach to standardizing the way Java
code self-contains itself within each 3D
object in the VRML scene graph. Just as I
can share VRML geometries with others on
the Web using VRML with an intranode Java
programming style, I can share behaviors
with others as well since an object’s behav-
ior is self-contained in its Transform node.
Imagine how quickly 3D cyberspace could
come to life if each VRML author spent time

studying and creating a different 3D object
and made it available on the Web. With 500
or so interesting and naturally behaving 3D

objects available, all VRML authors
could put together sophisticated

content in much shorter peri-
ods of time.

Intranode Java certainly
shows long-term promise
and should deliver the kind
of 3D cyberspace many of us
envision. Keep up with the
latest work of the VRML Con-
sortium to see intranode Java

progress. This article, on the
other hand, focuses on adding

Java through an External Author-
ing Interface (EAI). I use the EAI to

create my virtual pool halls, virtual solar
systems and virtual board games. In this
article I demonstrate using the EAI to create
a virtual kaleidoscope. The virtual kaleido-
scope project shows a good balance of
using VRML 2 and Java, each for its intend-
ed purpose.

Before diving into an example, consider
what makes the EAI different from intra-
node Java. The EAI was designed by Silicon
Graphics (SGI) for use with their CosmoPlay-
er VRML 2 plugin viewer. You can read all
about the EAI in the Developers’ link at
http://vrml.sgi.com. I think of the EAI as a pre-
sentation venue for a Java virtual machine. To
me, although the EAI requires a .wrl file, the
EAI is Java-centric. Intranode Java is VRML 2-
centric. So, to the EAI VRML 2 extends Java.
To intranode scripting within VRML 2, Java
extends VRML 2. This is not a subtle differen-
tiation. These differences affect the whole
thought process I follow when I develop Web-
based, 3D virtual worlds.

Consider what is required of your audi-
ence when you use the EAI. Each partici-
pant in your virtual world must download
all the Java classes you use in your world.
Yet, the classes they download can include
network-aware classes that help them
share 3D worlds with others. The classes
they download can also include GUI con-
trols created using the Java AWT. Using the
EAI, you can provide additional controls
beyond those available in their VRML view-
er of choice. By focusing on Java, your
world can quickly be updated to take
advantage of any new Java classes or API
made available by Sun or others on the Net.

But I’m sure you do not want to write
your whole user interface using Java. Why
not take advantage of the existing VRML
viewers to give your audience the freedom
to move about in your world in a manner
they prefer? Using VRML 2 for your 3D pre-
sentation delivery is much better than any
other available presentation tool on the net
today. Yet, a 3D API from Sun shows much

promise for the future. Check out
http : / / java .sun.com/products/ java -
media/3D/forDevelopers/3Dguide/j3dTOC.
doc.html to see Sun’s 3D API specification.

One final note before I dig into the
details of using the EAI. There is no reason
you can’t use both the EAI and intranode
scripting in the same 3D virtual world. SGI
builds the EAI with flexibility in mind.

Using the EAI
The process of using the EAI is best

understood through example. Simplifying a
bit, the overall process goes as follows:
1. Create the VRML 2 world of your dreams

following the syntax of VRML 2.
2. Add additional empty Transform nodes

wherever you might like to add new
objects dynamically in response to your
audience’s actions.

3. Uniquely name the nodes you want to
change dynamically with Java using the
DEF keyword.

4. Extend Java’s Applet class to create your
own class which will be aware of your
VRML 2 file.

5. Create an HTML document to connect
your VRML 2 world from step 3 with your
class in step 4.

6. Follow the architecture of the EAI to con-
nect your class from step 4 to the brows-
er object of the Web browser.

7. Follow the architecture of the EAI to pro-
vide attributes in your class in step 4
which map to the DEF nodes of step 3.

8. Add an additional attribute for each
change you want to make to each
attribute in step 7 (translation, rotation,
scale, color, etc.).

9. Add an additional attribute for each
attribute in step 7 you want to be mouse-
click aware.

10.Create an event-handling routine for
each attribute you specify in step 9.

11.Pre-package as text strings any new
VRML nodes you may want to place into
the world in response to user actions.

12.Create methods (or additional classes
with methods) which use the attributes
of your class from step 4 to dynamically
change each attribute based on the state
of the virtual machine.

Then, the Java Virtual Machine can run
on its own as you rely on the EAI to pass
events to your Applet-extended Java class.
You just have to provide the interesting
event-handling routines and embed the
realistic physics in each object you want to
behave on its own. Consider putting each of
those objects into separate classes should
you want to reuse them in other projects.
As your project gets more complex, create
an Animator class to manage the interac-
tions between objects and a Timer class to

F
O

C
U

S
 O

N
 V

R
M

L
F
O

C
U

S
 O

N
 V

R
M

L

11VOLUME: 3 ISSUE: 6 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

12 • VOLUME: 3 ISSUE: 6Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

provide control over how fast things run.
Long term, you can create a Java server and
connect your world to others using Java
networking classes. Java makes networking
worlds relatively easy compared to other
programming languages.

Using the EAI in a Virtual
Kaleidoscope

Driving the EAI to its breaking point
requires a tremendous programming effort.
First things first. Here I provide you with an
intermediate use of the EAI so you can see
much of its design in use. My Kaleidoscope
world works well on 486 or Pentium-based
PCs and provides the user with an interest-
ing array of tools to use to change the
world. The Kaleidoscope world handles
some behavior in the VMRL 2 file, yet
extends user interactivity through Java.
Basically, it is a good starting point for your
study of the EAI.

The kaleidoscope, when first loaded in
the CosmoPlayer VRML 2 viewer (down-
loadable from http://vrml.sgi.com),
appears as shown in Figure 1. The kaleido-
scope, in the upper left of Figure 1, consists
of eight shapes chosen randomly from a
shape palette. You design the eight shapes
you want to use in the kaleidoscope and
create them as standard VRML 2 Shape
nodes. Each shape appears in a random
color. The same eight shapes appear as a
horizontal palette below the kaleidoscope.
Below the eight shapes palette is a color
palette. To the right appears a control panel
with 16 buttons. The buttons provide tools
a user can use to interact with the kaleido-
scope. Figure 2 shows the significance of
each control panel button.

A user interacts with the kaleidoscope
by clicking on a shape in the kaleidoscope,
redesigning the shape using the shape
palette, color palette and control panel and
then putting the new shape into the kalei-
doscope in place of the old. The three white
buttons from left to right allow a user to
replace a shape, start the kaleidoscope ani-
mation and stop the kaleidoscope anima-
tion. The rest of the control panel, from top
to bottom allows users to modify a shape
they are designing by decreasing the inten-
sity of color, increasing the intensity of
color, increasing scale or rotating the
shape. Figure 2 recaps the significance of
the control panel buttons. Note that the
left-most white button will choose a ran-
dom new shape if a user clicks on it without
designing his or her own new shape first.

You can build the kaleidoscope by fol-
lowing the steps outlined above. I will walk
you through the basic steps here, but you
should study the complete project code
which includes the VRML 2 file (K.wrl), Java
file (K.java) and HTML file (K.html). Not all

lines of code are covered by this condensed
explanation.
1. Create the VRML 2 world of your
dreams following the syntax of VRML 2.

Every visible object you see in Figure 1
exists as a DEF-defined Transform node in a
single VRML 2 file. Note that each Shape
node is a simple primitive VRML 2 shape
except for the shapes you use in the kalei-
doscope. Those eight shapes can be any
shapes you want to design. I just happened
to include a star, heart, guitar body and
vase as examples. Each Transform node in
the Kaleidoscope world contains a Touch-
Sensor node in order to connect the shape
to an event-handling routine that will affect
the world upon a user’s mouse click.

In my VRML 2 file, K.wrl, I use the follow-
ing Transform naming conventions: The
color controls have names that begin with
TC, the white animation control buttons
begin with T0, the scale controls start with
TSCALE, the rotation controls start with
TROT, the shape palette controls have a T fol-
lowed by a shape name (such as TGUITAR)
and the color palette items start with a CM.

Each kaleidoscope control is a Trans-
form node similar to the following, which
shows a color palette control’s Transform
node. Note that you can use the USE key-
word to reuse geometry or appearance field
nodes as I do to reuse the geometry for
each color palette square:

DEF CM2 Transform { children [
DEF TSC2 TouchSensor {}
Shape {…}

] translation 2 0 0 },

The eight shapes in the kaleidoscope
move according to simple OrientationInter-
polator nodes and two of the eight nodes
move according to PositionInterpolator
nodes as well. You should put the move-
ment in the VRML 2 file when it repeats
over and over. You should put the kaleido-
scope’s behavior in the Java file instead if it
lacks a highly repetitive motion. The kalei-
doscope contains two separate grouping
Transform nodes (named T1 and T2) which
contain eight nodes each. Transform nodes
T3, T4, T5 and T6 reuse T1 and T2 to simu-
late a mirror reflecting the images in the
kaleidoscope. ROUTE statements connect
the animation start and stop control but-
tons to the TimeSensor (named Time_T)
and interpolators needed for the animation.
2. Add additional empty Transform
nodes wherever you might like to add
new objects dynamically in response to
your audience’s actions.

The Transform nodes that make up the
kaleidoscope (their names start with a W)
do not contain any shapes when the VRML
2 file initially loads in the Web browser, yet
do contain TouchSensor nodes. Transform
node W9 will contain the shape of the node
the user is designing at any time. W9 also
contains no shape when the world initially
loads.
3. Uniquely name the nodes you want
to change dynamically with Java using
the DEF keyword.

Note that all the nodes I want to change
have been given unique names in step 1
above.
4. Extend Java’s Applet class to create

Figure 1: Kaleidoscope on first loading

F
O

C
U

S
 O

N
 V

R
M

L
F
O

C
U

S
 O

N
 V

R
M

L

13VOLUME: 3 ISSUE: 6 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

14 • VOLUME: 3 ISSUE: 6Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

your own class which will be aware of
your VRML 2 file.

After importing all the classes from the
Java language and EAI VRML packages you
need in order to compile your code, you
extend the Applet class with your own
class. For Kaleidoscope world, I created a
class I name K with the line:

public class K extends Applet implements
EventOutObserver {

5. Create an HTML document to con-
nect your VRML 2 world from step 3
with your class in step 4.

The HTML file, K.html (see Listing 1),
connects the K.wrl file with the Java code
using the HTML tags:

<center>
<embed src="k.wrl" border=0 height="500"
width="500"></center>

<applet code="K.class" mayscript></applet>

6. Follow the architecture of the EAI to
connect your class from step 4 to the
browser object of the Web browser.

I connect to Netscape Navigator with
these four lines:

JSObject win = JSObject.getWindow(this);
JSObject doc = (JSObject)
win.getMember("document");
JSObject embeds = (JSObject) doc.getMem-
ber("embeds");
browser = (Browser) embeds.getSlot(0);

7. Follow the architecture of the EAI to
provide attributes in your class in step
4 which map to the DEF nodes of step 3.

For Kaleidoscope world, you need 14
Node type attributes, some of which can
take advantage of array indexing. The vari-
able named root[] provides an indexed
Node for each shape in the kaleidoscope.
The variable named shape[] provides an
indexed Node for the shape of each root[]
node. The next six Node arrays create
attributes for the kaleidoscope nodes, color
palette nodes, shape palette nodes, scale
control nodes and rotation control nodes.
For example, the rotation controls are con-
nected to the K class through the line:

Node snsrro[] = {null,null,null,null};

The last six Node attributes set up
attributes for the color controls.

Each attribute connects to the VRML 2
file through the getNode() method of the
browser object. For example, in the init()
method of the K class, you can connect the
increase green color control to its appro-
priate Transform node using the line:

snsrg = browser.getNode("TSCG");

8. Add an additional attribute for
changes you want to make to each
attribute in step 7 (translation, rota-
tion, scale, color, etc.).

For Kaleidoscope world I decided to
package each change of translation, rota-
tion, scale or color in a string which follows
the syntax of valid VRML 2 nodes. So,
instead of changing each design feature
separately, I name removeChildren[] and
addChildren[] attributes to allow me to
remove VRML nodes and replace them with
new ones in a single line of code. Both are
of type EventInMFNode. The EAI provides
types for changing translation, rotation,
scale or color one at a time without having
to create VRML 2 syntax strings.
9. Add an additional attribute for each
attribute in step 7 you want to be
mouse-click aware.

You must also create a separate
EventOutSFTime type attribute to enable
each touch sensor you want users to be
able to use in your world. These attributes
connect to touch enabled timers in the
init() method of the K class as with the line
tTimeg = (EventOutSFTime) snsrg.get
EventOut(“touchTime”); which connects
the touch sensor from the green increase
intensity control to its appropriate timer.
10. Create an event-handling routine for
each attribute you specify in step 9.

You connect your time attributes to
your event-handling routines through the
use of an integer as with the line
tTimeg.advise(this, new Integer(25));

Then, in the callback() method of your
K class (all EAI applications must override
this exact callback() method in order to
work correctly), you create a routine that
will run each time the appropriate touch
sensor is activated. In the case of the
green intensity control, the event handling
routine appears as in the following.
Assuming you have assigned the active
touch sensor the value 25, the objgreen
variable increases by .1, which makes the
node being designed greener (if, of course,
the node is not already at maximum green
intensity):

else if (whichNum.intValue()==25) {
objgreen = objgreen + .1;
if(objgreen>1) {objgreen = 1;}

}

11. Pre-package as text strings any new
VRML nodes you may want to place into
the world in response to user actions.

For Kaleidoscope world, you create
eight different shapes you want to add to
the kaleidoscope in different combinations.
Each of these eight shapes is associated
with a shape attribute which converts from
a simple string using the createVrmlFrom-
String method of the browser class. You

Red

Decrease

Increase

Scale X

Rotation X Y Z Magnitude

Start
Animation
Stop
Animation

Scale Y

Scale Z

Change
Piece

Green Blue

F
O

C
U

S
 O

N
 V

R
M

L
F
O

C
U

S
 O

N
 V

R
M

L

Figure 2: Control panel buttons

15VOLUME: 3 ISSUE: 6 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

16 • VOLUME: 3 ISSUE: 6Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

remove unwanted nodes, for example
shape[8], using lines of code like
removeChildren[8].setValue(shape[8]); and
add new nodes using lines of code like add-
Children[8].setValue(shape[8]);

You must make sure you remove the
exact same node as exists in the VMRL 2
scene graph at any time. Otherwise, you
cannot add a new node in its place.
12. Create methods (or additional class-
es with methods) which use the attribut-
es of your class from step 4 to dynami-
cally change each attribute based on the
state of the virtual machine.

In Kaleidoscope world, much of the pro-
cessing works on manipulating strings which
create VRML 2 Transform and Shape nodes.
All translations take place within the VRML 2
file which makes sense since the kaleido-
scope’s movement is very repetitive in nature.

Much of the power of the EAI takes
advantage of moving VRML 2 objects
according to complex logic embedded in
Java classes. I would use Java to create
kaleidoscope behaviors that were based on
real-world physics. In that case, my virtual
machine would have to perform collision
detection and move the shapes according
to the logic that responds to collisions.

Note: Kaleidoscope world was created
specifically for the EAI included with Silicon
Graphics’ CosmoPlayer 1.0 release of their

VRML viewer. I compiled my Java code using
JDK 1.0.9. In the 1.0 implementation, I per-
form multiple EAI changes to a node
in response to a single touch event.
In version 2.0 of CosmoPlayer,
multiple changes to a single
node within a single event-han-
dling routine are not guaran-
teed to be handled by the
viewer in the order they
appear in the Java code. So, a
removeChildren.setValue()
method is not guaranteed to
take place before the related
addChildren.setValue(). To avoid
any console warnings, you could
add another white control button
whose event-handling routine would contain
the necessary remove node functionality.
Then, the add node routine could exist sepa-
rate from the remove node routine.

Conclusion
The EAI fills in the gaps between the

built-in functionality of a VRML 2 viewer,
model specification of VRML 2 file syntax
and programmability of Java through the
use of an embedded Applet on an HTML
Web page. Once a VRML 2 file has been
read into a Java class structure, the world
model can interact with a Java Virtual
Machine capable of all kinds of new, cre-

ative processing including processing on
multiple machines across a network.

Creating interactive worlds with the
EAI is thus open-ended, yet every

Java class you involve in the
processing must be delivered
to each user. If your user’s
VRML viewer already con-
tains the processing logic to
perform an action to your vir-
tual world, you should
attempt to use the appropri-

ate VRML 2 mechanism for
enabling that action. Java

through the EAI is appropriate
for extending a VRML viewer’s

capabilities perhaps only until the
next VRML viewer version that contains
the necessary enhancement.

Complete project code for Kaleidoscope
may be found at www.sys-con.com/vrml.

About the Author
Bruce Campbell is a virtual reality and human
interface research scientist working at the Human
Interface Technology Laboratory at the University of
Washington in Seattle. He enjoys teaching group-
ware and Web-related technologies through writing
books and lecturing in front of a live audience. Bruce
can be reached at bdc@hitl.washington.edu

1/2 Ad

F
O

C
U

S
 O

N
 V

R
M

L
F
O

C
U

S
 O

N
 V

R
M

L

bdc@hitl.washington.edu

17VOLUME: 3 ISSUE: 6 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

18 • VOLUME: 3 ISSUE: 6Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

The purpose of this article is to explain
how to change the appearance of some
shapes as a result of the user clicking on
one of them. This article assumes that you
are a beginning VRML developer.

VRML and JavaScript
One is a language used to describe 3D

worlds while the other is the most popular
scripting method for the Internet. When you
put these two together you get a way to
change the attributes of the virtual world as
the result of outside events. The new VRML
2.0 standard finally offers the VRML develop-
er avenues to create interactivity within the
VRML world as a result of user activity. This
powerful and flexible ability is made possible
by the new Script node that basically allows
the programmer to use code that does not
exist within the native VRML syntax.

For this article we will create a world
that displays three primitive shapes. A click
of the mouse on any of these shapes will
change the appearance of the one clicked
as well as the other two. To make this hap-
pen we will discuss how to “sense” a click
from the mouse using the TouchSensor
node. Then we shall look at class specifiers
and type specifiers that specify criteria for
what kinds of data can be received or sent
from node to node. After that, we will look
at the Script node and, finally, routing data
between nodes. Also, for our example, I
assume that the reader is familiar with the
fundamentals of the VRML specification as
well as the basics of JavaScript.

First, we need to set the stage. Using the
code in Listing 1, I have created the three
primitive shapes that have come to sym-
bolize VRML: the red cube, green sphere
and blue cone. The resulting world is seen
in Figure 1. Looking at the code you should
notice that each object is contained in a
Transform node. This grouping node can

contain many other nodes within its chil-
dren field. So far, I have placed only one
node as a child to the Transform node, the
Shape node. Like the Transform node, the
Shape node is a grouping node that can
contain other nodes. I use the Appearance,
Material and three different “shape” nodes
to build this scene. Later, however, we will
add the TouchSensor and Script nodes to
the list of children.

Now we need to add an element that is
capable of “sensing” the actions of the
user’s mouse. The VRML 2.0 specification
includes the TouchSensor node that is
capable of detecting whether the mouse
pointer is either over an object or has
clicked on an object. Think of the Touch-
Sensor node as the VRML equivalent of the
JavaScript event methods “onMouseOver”
and “onClick”. The TouchSensor node

“senses” mouse actions for all of the shapes
contained as children within the group. In
other words, the TouchSensor node acts as
a catchall sensor for its siblings. So, now we
need to add this node as a child node in
each one of the Transform nodes. Listing 2
shows the code after these additions. Now
our three primitive shapes are capable of
being clicked.

Next, we need to add code that says:
“When an object is clicked, make that
object glow and make the other objects
dull.” But before we can do that, we need to
digress and understand the concept of
class specifiers and type specifiers. Each
node in the VRML standard has a definition.
Included in the definition are the class
specifiers and type specifiers for each item.
The class specifiers are eventIn, eventOut,
field and exposedField. These define how
accessible the items of the node are to
other nodes. Think of them as setting a
“scope” for different items in the node. The
eventIn specifier defines an event that the
node is capable of receiving. In opposition,
the eventOut specifier defines an event that
the node can generate. These specifiers are
enforced very strictly. A field class specifier
is a private member of a node and cannot
receive or generate events to any other

Glow
Shapes Glow

Building three objects that glow
and dim as you click on them

by Guy Huggins

Figure 1

F
O

C
U

S
 O

N
 V

R
M

L
F
O

C
U

S
 O

N
 V

R
M

L
INTEGRATING JAVASCRIPT INTO VRML

19VOLUME: 3 ISSUE: 6 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

20 • VOLUME: 3 ISSUE: 6Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

nodes or elements. Its contents are used
only within the node itself. Finally, there is
the exposedField specifier. This specifier is
a hybrid of eventIn and eventOut. When it
receives an event (eventIn) it automatically
generates a corresponding eventOut. How-
ever, it is not necessary to have any ele-
ment “catching” the resulting eventOut
from an exposedField. What the class spec-
ifiers allow us to do is set up mail slots for
our nodes. Think of eventIns as a node’s
incoming mail slot that receives messages
and events from other VRML elements.
EventOuts are a node’s outgoing mail slot
which sends messages and events to other
VRML elements. The field specifier is like
mail kept in the top drawer, hidden from
the view of the other VRML elements, and
exposedFields are like a revolving door:
they just receive an event in and send it out
to any other node that may be waiting for it.

Along with the class specifiers are type
specifiers. Type specifiers define what
kinds of data the class specifiers are capa-
ble of sending and receiving. All type speci-
fiers start with “SF” or “MF”. An “SF” type
means that this item can contain only a sin-
gle value. An “MF” type means that this
item can contain multiple values. Following
the “SF” or “MF” is the identifier that tells us
the type of data being defined. For example,
“SFString” means that this particular item
can only hold a single string value.
“MFInt32” means that this particular item

can hold multiple integer values. Think of
type specifiers as having two distinct
halves. The first half defines how many val-
ues can be held and the second half defines
the type of data.

These two specifiers work together to
restrict what kinds of data can be received
as an eventIn or generated as an eventOut.
The same works for an exposedField and a

field. Therefore, looking at the definition, we
see that the TouchSensor node has seven
items: six eventOuts and one exposedField.
Note that it does not have any eventIns.
This only makes sense considering the pur-
pose of this node. This node only sends
messages to other nodes about the mouse
actions that it senses and it does not need
the ability to receive messages.

Listing 1: Creating shapes.
Viewpoint{
position 0 0 10

}

/// Here is my Box at -5,0,0 (relative to the origin)
//////////////////////
///
Transform{
translation -5 0 0
children[
Shape{
appearance Appearance{

material DEF boxColor Material{
ambientIntensity 0
diffuseColor .2 0 0

emissiveColor .2 0 0
shininess .2
specularColor 0 0 0
transparency 0

}
}

geometry Box{
size 2 2 2

}
}

]
}

/// Here is my Sphere at 0,0,0 (relative to the origin)
///////////////////////
//

Transform{
translation 0 0 0

children[
Shape{
appearance Appearance{

material DEF sphereColor Material{
ambientIntensity 0
diffuseColor 0 .2 0

emissiveColor 0 .2 0
shininess .2
specularColor 0 0 0
transparency 0

}
}

geometry Sphere{
radius 1

}
}

]
}

/// Here is my Cone at 5,0,0 (relative to the origin)
///
Transform{
translation 5 0 0
children[
Shape{
appearance Appearance{

material DEF coneColor Material{
ambientIntensity 0
diffuseColor 0 0 .2

emissiveColor 0 0 .2
shininess .2
specularColor 0 0 0
transparency 0

}
}

Figure 2

F
O

C
U

S
 O

N
 V

R
M

L
F
O

C
U

S
 O

N
 V

R
M

L

21VOLUME: 3 ISSUE: 6 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

22 • VOLUME: 3 ISSUE: 6Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Now it is time to introduce the Script
node. The Script node is sort of a “roll your
own” node, meaning that developers have
the ability to add any number of eventIn,
field and eventOut items they need. Our
Script node will be placed as a child within
the Transform node, just like the TouchSen-
sor node before it. The Script node contains
a native exposedField item “URL”. It is this
item that we will use to “link” our JavaScript
code to out VRML code. This can be accom-

plished by using a true URL reference to a
JavaScript file located on a Web server, or
you can embed the JavaScript code directly
in the VRML code, much like embedding
JavaScript into an HTML document. So now
we add the Script node and the JavaScript
code to our VRML document as shown in
Listing 3. Notice that all of the Script nodes
I have added are identical; the only differ-
ence is a slight change in the colors
assigned by the script itself. The Script

node contains the required URL field that
houses my JavaScript code. All of the other
items were created by me. I manufactured
an eventIn item with a single Boolean value
and named it “clicked”. I also manufactured
three other items as eventOuts, each capa-
ble of sending single color values that I
named “b_color”, “s_color” and “c_color”,
respectively. The script itself, like the rest of
this example, is rather elementary. The
function “clicked()” simply declares the

geometry Cone{
bottomRadius 1

height 2
}

}
]

}

Listing 2:TouchSensor node as child node.
Viewpoint{
position 0 0 10

}

/// Here is my Box at -5,0,0 (relative to the origin)
///

Transform{
translation -5 0 0
children[
DEF boxSensor TouchSensor{
}
Shape{
appearance Appearance{

material DEF boxColor Material{
ambientIntensity 0
diffuseColor .2 0 0

emissiveColor .2 0 0
shininess .2
specularColor 0 0 0
transparency 0

}
}

geometry Box{
size 2 2 2

}
}

]
}

/// Here is my Sphere at 0,0,0 (relative to the origin)
//

Transform{
translation 0 0 0
children[
DEF sphereSensor TouchSensor{
}
Shape{
appearance Appearance{

material DEF sphereColor Material{
ambientIntensity 0
diffuseColor 0 .2 0

emissiveColor 0 .2 0
shininess .2
specularColor 0 0 0
transparency 0

}
}

geometry Sphere{
radius 1

}
}

]
}

/// Here is my Cone at 5,0,0 (relative to the origin)
///

Transform{
translation 5 0 0
children[
DEF coneSensor TouchSensor{
}
Shape{
appearance Appearance{

material DEF coneColor Material{
ambientIntensity 0
diffuseColor 0 0 .2

emissiveColor 0 0 .2
shininess .2
specularColor 0 0 0
transparency 0

}
}

geometry Cone{
bottomRadius 1

height 2
}

}
]

}

Listing 3.
///
Example for VRML Developers Journal - Guy D. Huggins /////
/// D E L T A V - http://www.deltav.net
///

/// Let's get a little closer
///

Viewpoint{
position 0 0 10

}

/// Here is my Box at -5,0,0 (relative to the origin)
///
Transform{
translation -5 0 0
children[
DEF boxSensor TouchSensor{
}
Shape{
appearance Appearance{

material DEF boxColor Material{
ambientIntensity 0
diffuseColor .2 0 0

emissiveColor .2 0 0
shininess .2
specularColor 0 0 0
transparency 0

}
}

geometry Box{
size 2 2 2

}
}

F
O

C
U

S
 O

N
 V

R
M

L
F
O

C
U

S
 O

N
 V

R
M

L

23VOLUME: 3 ISSUE: 6 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

24 • VOLUME: 3 ISSUE: 6Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

variables “b_color”, “s_color” and “c_color”
and assigns to them new single-color values.

It is important to note that the name of
my JavaScript function is identical to the
eventIn item I created called “clicked”.
Naming the JavaScript function identical to
an eventIn of its hosting Script node is how
you “call” that particular JavaScript func-
tion when its corresponding eventIn is
received. What this basically says is, “When
I receive the ‘clicked’ eventIn I need to exe-

cute the JavaScript function ‘clicked’.” Also
note that the names of my three JavaScript
variables are identical to the three eventOut
items I created. Once again, the names of
the variables and the eventOuts are the
same to relate them to one another. Notice
now that when you place your mouse point-
er over an object in the world it changes to
denote that the object is now clickable as
the result of the TouchSensor node’s pres-
ence. But when you click it, nothing hap-

pens. There is still a piece missing.
Currently, we have a mechanism in place

that detects the click but once the event
occurs there is no transport method in
place that takes that click event and gives it
to our script. What we need to have happen
is something like this: “When the user clicks
on the object, execute the script found in
the Script node. Take the values assigned
within the script and send them to the
appropriate Appearance node to change the

DEF boxScript Script{
eventIn SFBool clicked
eventOut SFColor b_color
eventOut SFColor s_color
eventOut SFColor c_color
url "javascript:
function clicked()
{
b_color = new SFColor(1, 0, 0);
s_color = new SFColor(0, .2, 0);
c_color = new SFColor(0, 0, .2);

}"
}
]

}

/// Here is my Sphere at 0,0,0 (relative to the origin)
///
Transform{
translation 0 0 0
children[
DEF sphereSensor TouchSensor{
}
Shape{
appearance Appearance{

material DEF sphereColor Material{
ambientIntensity 0
diffuseColor 0 .2 0

emissiveColor 0 .2 0
shininess .2
specularColor 0 0 0
transparency 0

}
}

geometry Sphere{
radius 1

}
}

DEF sphereScript Script{
eventIn SFBool clicked
eventOut SFColor b_color
eventOut SFColor s_color
eventOut SFColor c_color
url "javascript:
function clicked()
{
b_color = new SFColor(.2, 0, 0);
s_color = new SFColor(0, 1, 0);
c_color = new SFColor(0, 0, .2);

}"
}
]

}

/// Here is my Cone at 5,0,0 (relative to the origin)
///

Transform{
translation 5 0 0
children[
DEF coneSensor TouchSensor{
}
Shape{
appearance Appearance{

material DEF coneColor Material{
ambientIntensity 0
diffuseColor 0 0 .2

emissiveColor 0 0 .2
shininess .2
specularColor 0 0 0
transparency 0

}
}

geometry Cone{
bottomRadius 1

height 2
}

}
DEF coneScript Script{

eventIn SFBool clicked
eventOut SFColor b_color
eventOut SFColor s_color
eventOut SFColor c_color
url "javascript:
function clicked()
{
b_color = new SFColor(.2, 0, 0);
s_color = new SFColor(0, .2, 0);
c_color = new SFColor(0, 0, 1);

}"
}
]

}

Listing 4:Adding routing statements.
Viewpoint{
position 0 0 10

}

/// Here is my Box at -5,0,0 (relative to the origin)
///

Transform{
translation -5 0 0
children[
DEF boxSensor TouchSensor{
}
Shape{
appearance Appearance{

material DEF boxColor Material{
ambientIntensity 0
diffuseColor .2 0 0

emissiveColor .2 0 0
shininess .2
specularColor 0 0 0
transparency 0

}
}

geometry Box{
size 2 2 2

}
}
DEF boxScript Script{
eventIn SFBool clicked
eventOut SFColor b_color
eventOut SFColor s_color
eventOut SFColor c_color
url "javascript:
function clicked()

F
O

C
U

S
 O

N
 V

R
M

L
F
O

C
U

S
 O

N
 V

R
M

L

25VOLUME: 3 ISSUE: 6 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

26 • VOLUME: 3 ISSUE: 6Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

brightness of all the objects.” The transport
mechanism that does this for us is routes.

Routes join the eventOuts from one
node to the eventIns of other nodes. These
can exist as one-to-one, one-to-many or
many-to-one. In order to do this, however,
you must name each one of the corre-
sponding nodes using the DEF identifier.
Note that in Listing 3 I have named the
TouchSensor nodes, the Script nodes and
the Appearance nodes for all three objects.
These are the nodes that will be involved in
the routing statements. Finally, we will add
the routing statements to our VRML docu-
ment as depicted in Listing 4. Essentially,
what the routing statements for the box
object say is, “Route the click event from
the box’s sensor (an eventOut from boxSen-
sor) to the eventIn ‘clicked’ of the box’s
script (boxScript). Once this is received
into the Script node (boxScript), execute
the function ‘clicked’. As a result of this

function, generate the eventOuts b_color,
s_color and c_color with the single value
colors that were assigned to them in the
script. Then, route the eventOut b_color
(from boxScript) to the eventIn ‘diffuseCol-
or’ of the box object (boxColor). Route the
eventOut s_color (from boxScript) to the
eventIn ‘diffuseColor’ of the sphere object
(sphereColor). Finally, route the eventOut
c_color (from boxScript) to the eventIn ‘dif-
fuseColor’ of the cone object (coneColor).”
When we look at this world in the VRML
browser we see that when we click on an
object, it glows while the others get dim.
Figure 2 shows this result.

This simple example shows how to use
several VRML elements with JavaScript to
build three objects that glow and dim as the
user clicks on the varying objects. It is
important to note that the result depends
on the VRML browser being used. Like
HTML, VRML is first interpreted by the

browser and then rendered on the screen.
Therefore, it is important for the developer
to use methods that will be correctly inter-
preted by the VRML browser. This example
was created to use Intervista’s World View
2 for its ability to interpret JavaScript.
While all VRML 2.0-compliant browsers will
read and render the VRML the same, they
are not all capable of interpreting the same
scripting languages.

About the Author
Guy Huggins is a speaker, writer and trainer on
Internet development and networking subjects, as
well as a Partner at DELTA V, an Internet and Web-
development company based in Arlington, TX. Guy is
a Level II Microsoft Sitebuilder, a Microsoft Certified
Professional and a guest speaker at Internet World
conferences at home and abroad. He can
be reached at ghuggins@deltav.net

{
b_color = new SFColor(1, 0, 0);
s_color = new SFColor(0, .2, 0);
c_color = new SFColor(0, 0, .2);

}"
}
]

}

///Here is my Sphere at 0,0,0 (relative to the origin)
///

Transform{
translation 0 0 0
children[
DEF sphereSensor TouchSensor{
}
Shape{
appearance Appearance{

material DEF sphereColor Material{
ambientIntensity 0
diffuseColor 0 .2 0

emissiveColor 0 .2 0
shininess .2
specularColor 0 0 0
transparency 0

}
}

geometry Sphere{
radius 1

}
}

DEF sphereScript Script{
eventIn SFBool clicked
eventOut SFColor b_color
eventOut SFColor s_color
eventOut SFColor c_color
url "javascript:
function clicked()
{
b_color = new SFColor(.2, 0, 0);
s_color = new SFColor(0, 1, 0);
c_color = new SFColor(0, 0, .2);

}"
}
]

}

/// Here is my Cone at 5,0,0 (relative to the origin)
///

Transform{

translation 5 0 0
children[
DEF coneSensor TouchSensor{
}
Shape{
appearance Appearance{

material DEF coneColor Material{
ambientIntensity 0
diffuseColor 0 0 .2

emissiveColor 0 0 .2
shininess .2
specularColor 0 0 0
transparency 0

}
}

geometry Cone{
bottomRadius 1

height 2
}

}
DEF coneScript Script{

eventIn SFBool clicked
eventOut SFColor b_color
eventOut SFColor s_color
eventOut SFColor c_color
url "javascript:
function clicked()
{
b_color = new SFColor(.2, 0, 0);
s_color = new SFColor(0, .2, 0);
c_color = new SFColor(0, 0, 1);

}"
}
]

}

/// Here are the ROUTE statements
//////////////////

ROUTE boxSensor.isActive TO boxScript.clicked
ROUTE boxScript.b_color TO boxColor.set_diffuseColor
ROUTE boxScript.s_color TO sphereColor.set_diffuseColor
ROUTE boxScript.c_color TO coneColor.set_diffuseColor
ROUTE sphereSensor.isActive TO sphereScript.clicked
ROUTE sphereScript.b_color TO boxColor.set_diffuseColor
ROUTE sphereScript.s_color TO sphereColor.set_diffuseColor
ROUTE sphereScript.c_color TO coneColor.set_diffuseColor
ROUTE coneSensor.isActive TO coneScript.clicked
ROUTE coneScript.b_color TO boxColor.set_diffuseColor
ROUTE coneScript.s_color TO sphereColor.set_diffuseColor
ROUTE coneScript.c_color TO coneColor.set_diffuseColor

F
O

C
U

S
 O

N
 V

R
M

L
F
O

C
U

S
 O

N
 V

R
M

L

ghuggins@deltav.net

27VOLUME: 3 ISSUE: 6 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Java DEVELOPER’S Journal

Creating & Using a

by Donald Fowler

JDJ FEATURE

Over the past several years, wizards have become

the preferred UI method of guiding a user through a

series of steps. In this article we explore the methodology

involved in creating a general wizard class. We then

discuss the supporting classes and interactions we

should consider to successfully complete a wizard.

29VOLUME: 3 ISSUE: 6 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

As it turns out, designing and imple-
menting this wizard framework exposes
many of the real-world design and program-
ming issues we face when creating Java
applications.

Overview
The first step in designing our wizard

class is to come up with an interface. An
interface is a prototype for a class in which
we describe the class’ functionality without
getting into implementation details. When
designing an interface, think about how
someone would use the class and jot down
some pseudo-code. Translate these ideas
into member functions to create the inter-
face. One thing to remember is that the ini-
tial pass at an interface will rarely be the
last. You will probably end up modifying
and improving the interface several times
during the course of development.

Since there are several different ways we
could go about designing our wizard inter-
face and corresponding implementation
class, we need to decide what features are
important to us. For instance, what types of
containers do we want our wizard to be
capable of displaying? What events do we
want our wizard to support? Do we want to
support multicasting of events, and, if so,
how? Do we want to have random access to
our wizard pages or is sequential access
sufficient? What do we want our wizard but-
tons to look like?

There are three main elements to a wiz-
ard.
• First, there are the navigation buttons

(next, previous, cancel, etc.).
• Second, there are the information and

controls presented by the wizard, which I
refer to as “pages.”

• Finally, there is the dialog, typically
modal, that contains the active page and
the navigation buttons.

The Layout
We now need to think about how the

wizard dialog should be laid out. Because
the wizard navigation buttons are indepen-
dent of the content pages, we want to cre-
ate two distinct areas within the dialog. The
first area, which will occupy the upper
region of the dialog, will consist of the infor-
mation that changes between each wizard
page. The second area, which will occupy
the lower region of the dialog, will contain
the wizard navigation buttons. This is
where Java’s layout manager classes will
come in handy.

Messaging
The next issue we need to deal with is

messaging. We need to provide a mecha-
nism in our wizard class to notify the out-
side world of events. To do this we will

need to create our own event and listener
classes so that the appropriate event
occurs when one of our navigation buttons
is clicked.

If you are experienced in using the AWT,
you are probably familiar with event listen-
ers and event adapters. For instance, Java
provides a class called WindowAdapter to
accept events that occur on a window. The
class is provided mainly for convenience
reasons, providing empty methods for all
the various window events. To actually do
something, you must extend the Win-
dowAdapter class and tell the window
about it by calling the AddWindowListener
function.

We are going to use a similar structure in
our wizard framework. Our wizard class will
allow a user to set a particular Wiz-
ardAdapter to have the wizard messages
sent to. We are going to design our wizard
so that there can be only one Wiz-

ardAdapter active at any given time. Note,
however, that this does not prevent us from
multicasting the events, if desired, since
you can add that functionality to the Wiz-
ardAdapter class. Why not allow multiple
listeners to be registered with the wizard
class as they can in Java’s Window class?
Consider the events that our wizard class is
producing. In response to these events
(next, previous, finish, etc.) we might vali-
date some of the fields in the current page,
then tell the wizard class to display the next
page or the previous page, or to close the
dialog. Can you see some of the potential
problems if these events were to be
processed by independent listeners? What
if the first listener told the wizard to
advance to the next page, while the next lis-
tener, not knowing about the first, did the
same thing? In this case you would get the

unintended result of advancing two pages
whenever the next button was clicked.

By limiting the wizard class to one Wiz-
ardAdapter, we require a central point of
control by the user of the wizard class. This
is important because it is the user of the
class, not the wizard class itself, that knows
how the wizard should be used. If users
want events to be multicast, they can imple-
ment that multicasting inside their Wiz-
ardAdapter, simply forwarding on the wiz-
ard events to all interested parties. The les-
son here is to provide functionality appro-
priate for the object being modeled. Don’t
add capabilities just because you think
they’re cool.

Example Classes
To show how you use the wizard class, I

created a sample vacation wizard. This wiz-
ard is relatively simple, yet illustrates most
of the features of the wizard class, as well

as some interesting “gotchas.”
To effectively use the wizard class, sev-

eral application-specific support classes
are created, as shown in Figure 1. An appli-
cation-specific version of the Wiz-
ardAdapter class (VacationWizardAdapter)
is created to handle messaging, while a
class called VacationWizard is used to cre-
ate the wizard content pages and control
the interactions between wizard pages. The
VacationWizard class knows about both the
wizard class and the VacationWiz-
ardAdapter class. The VacationWiz-
ardAdapter takes a VacationWizard
instance in its constructor so that it knows
whom to send messages to. The three
classes used together provide a flexible and
extensible mechanism for handling wiz-
ards.

General Purpose– Broadcasts
messages to a Wizard Adapter
derived class. Does not know
specifically about any other
classes in framework

Wizard Class

Specialized class– Knows
about the VacationWizard
class

VacationWizard
Adapter Class

Specialized class– Knows
about the VacationWizard
class and Wizard classes

VacationWizard
Class

Figure: 1

30 Java DEVELOPER’S Journal • VOLUME: 3 ISSUE: 6 http://www.JavaDevelopersJournal.com

The Details
Let us begin by taking a closer look at

the interface definition for the wizard class
(see Listing 1). From this interface defini-
tion we can see that in addition to the basic
wizard navigation support, we also want
our wizard to be able to support advanced
features such as hidden panels, keyboard
navigation, help button and messaging.

In implementing our wizard class, one of
the first issues we must confront is what
existing Java class we want to extend. As I
mentioned in the overview, a modal dialog
is typically used as the container for the
various wizard elements. To get some expo-
sure to some of the new JFC classes, we will
extend the JFC class Jdialog.

public class Wizard extends
com.sun.java.swing.JDialog

implements WizardControllerInterface

Notice that this declaration says we are
going to implement the WizardInterface
that we listed earlier. Therefore, our class
definition must define all the member func-
tions we defined in our WizardInterface.

The Layout
As I alluded earlier, Java’s layout classes

come in handy when implementing our Wiz-
ard class. Using a GridBagLayout, we can lay
out the wizard dialog’s contents as shown in
Figure 2. The uppermost area is itself a Jpan-
el that uses its own layout manager, Card-
Layout, to manage the wizard pages. I won’t
go into the details of laying out controls
using the GridBagLayout here, but look at the
source code if you are interested.

Messaging
How do we go about handling the mes-

saging? First, we need to create a new event
type called a WizardEvent by extending
Java’s EventObject class (see Listing 2). We
will then need to create a WizardListener
class by extending the Java’s EventListener
class. Our WizardListener class will handle
the events shown in Listing 3.

Inside our wizard class we need to cre-
ate ActionListeners for each of our wizard
navigation buttons, such as:

previous_.addActionListener(new PreviousBut-
tonListener());

Our listener classes simply fire off an
appropriate event when one of our naviga-
tion buttons is clicked. Listing 4 shows how
one of these functions, PreviousButtonLis-
tener, is implemented.

In addition, we need to add KeyListeners
for each of our wizard navigation buttons
since we want to support keyboard control
of our navigation buttons using the Enter
Key.

next_.addKeyListener(new NextEnterKeyListen-
er());

All we are doing here is checking to see
if the Enter Key is pressed while the focus is
on one of our navigation buttons. If it is, we
fire off the appropriate event. Listing 5
shows how the NextEnterKeyListener is
implemented.

Page Navigation
How do we accomplish the task of mov-

ing between pages in the wizard class? As
mentioned earlier, the Java Layout Manag-
er called CardLayout is used to switch
between wizard pages. The CardLayout is
ideal for use with wizards because it

allows easy access to all the pages in the
layout either sequentially or randomly via
a name. (See the complete listing for
details.)

The wizard class offers the ability to
hide certain pages of the wizard if desired.
As we will see in our example, many times
we might want to create a wizard that
shows certain pages conditionally. This is
accomplished by using the wizard func-
tions hidePanel and unHidePanel. PanelAt-
tribute class is used inside the wizard class
to maintain state about each page of the
wizard. If a page is marked as hidden, that
page is bypassed by the forward and next
logic of the wizard. (See the complete list-
ing for details.)

Miscellaneous
Our wizard class also has the ability to

display messages. The user of the wizard
class might want to display a message
stating that all the required fields of the
wizard have not been filled in. A user
might also want to display a specific field
validation message, such as “value must
be between 10 and 50.” The wizard class
handles these situations using a specific
function called displayRequiredFieldMes-
sage, as well as provides a generic error
message function called displayErrorMes-
sage that takes a title and a message
string.

An Example
To create an actual wizard of your own,

you need to decide on the content and
order of the wizard pages. Once you have
figured that out, you need to decide what
container you will use for the wizard pages.
Our wizard class allows you to use any
class derived from the AWT’s Component
class. For the sample wizard I used a variety
of components such as the AWT’s Panel and
ScrollPanel class, as well as the new JFC’s
Jpanel class.

Once you have your wizard pages
designed, you need to deal with any
required interactions between the various
controls on the same page as well as the
interactions between pages. For instance,
in the VacationWizard example, the second
page of the wizard is displayed only if
Hawaii has been selected as the destina-
tion. Therefore, we need to be able to con-
ditionally hide/unhide this wizard page
based on the value of the radio buttons on
the first wizard page.

To check the values of various controls
at the appropriate time, messages need to
be sent when a wizard page is activated and
deactivated. This is the job of our Vacation-
WizardAdapter. Since the VacationWiz-
ardAdapter is the class that is getting the
messages (previous, next, finish, etc.) from

Dialog
Frame

Navigation
Buttons

Information &
Controls go in
here…
Refered to as
a “page”

Figure: 2

31VOLUME: 3 ISSUE: 6 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

the Wizard Class, it is responsible for call-
ing the initializePage and finalizePage func-
tions of the VacationWizard class, passing
the current wizard page as a parameter.
The finalizePage function can veto moving
to the next page by returning false. This is a
handy mechanism for validating fields and
preventing the wizard from moving forward
until all the appropriate fields and values
are filled in.

The code in the VacationWizard class
deals mostly with creating the content
pages for the wizard. However, there is one
interesting thing to look at. While creating
and testing the wizard pages, I discovered
some undesired behavior with the AWT’s
TextArea class. I wanted to use a non-
editable TextArea to display some explana-
tory text at the top of each wizard page (see
Figure 3). At first glance everything looked
okay. However, when I used the tab key to
tab around the dialog, I noticed that once
the TextArea received the focus, it did not
want to give it back. Although I’m sure the
TextArea was happy, the rest of my controls
were feeling left out.

I imagine this behavior stems from the
fact that in a standard editable text area,
the tab key really means to put in a tab
character. Fortunately, you can get around
this problem by deriving a new class from
TextArea. I called my new class Unfo-

cusedTextArea (see List-
ing 6). After searching
the documentation, I
found a handy function
in the AWT’s Compo-
nent class, from which
TextArea descends,
called isFocusTraversa-
ble. The key to solving
the problem lies in over-
riding this function in
our UnfocusedTextArea
class so that it simply
returns false. This
means that the text area
will never actually get
the focus -- which is
exactly what we want to happen in this
case.

Conclusion
There are many different ways to design

a wizard class and its supporting classes. I
have presented one way that provides a
flexible and extensible framework for creat-
ing real-world wizards. One thing to keep in
mind when building applications of your
own is that most real-world problems
require more than one class to model. In
most cases it is best to solve problems with
mini-frameworks that use a general-pur-
pose class or classes (like the Wizard class)

combined with one or more specializing
classes (like the VacationWizard and Vaca-
tionWizardAdapter classes).

About the Author
Donald Fowler works as a software design
developer at Rogue Wave Software where he is cur-
rently the technical lead for the Software Parts Man-
ager product line. He has 15 years of software
design and development experience specializing
in GUI programming and 7 years’ experience in
object-oriented design and programming. Donald
can be e-mailed at donald@roguewave.com.

Listing 1: WizardInterface

import java.awt.Component;

//Interface for a Wizard Class
public interface WizardInterface
{
//
public void setWizardAdapter(WizardAdapter adapter);
public WizardAdapter getWizardAdapter();

public void setTitle(String title);

//Optional Help Button
public void setHelpVisible(boolean state);
public boolean isHelpVisible();

//Enter key behavior
public void setEnterKeyActive(boolean state);
public boolean isEnterKeyActive();

//Panels can be hidden - if hidden, they are skipped by previ-
ous,next
public void hidePanel(int index);
public void hidePanel(Component panel);
public boolean isPanelHidden(int index);
public boolean isPanelHidden(Component panel);
public void unHidePanel(int index);
public void unHidePanel(Component panel);

public int getNumberOfPanels();

public int getCurrentPanelIndex();
public Component getCurrentPanel();
public Component getPanel(int index);

public int getPanelIndex(Component panel);

//allows you to go directly to any panel in the wizard
//returns false if panel is hidden and could not be displayed
public boolean setCurrentPanel(int index);

public void doPrevious();
public void doNext();
public void doFinish();
public void doCancel();
public void doHelp();

public boolean isPreviousEnabled();
public boolean isNextEnabled();
public boolean isFinishEnabled();
public boolean isCancelEnabled();
public boolean isHelpEnabled();

}

Listing 2: WizardEvent

import java.util.*;

public class WizardEvent extends java.util.EventObject {
Wizard wizard_;

Figure: 3

donald@roguewave.com

32 • VOLUME: 3 ISSUE: 6Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

public WizardEvent(Object source, Wizard wiz){
super(source);
wizard_=wiz;

}
public Wizard getWizard(){

return wizard_;
}

}

Listing 3: WizardListener

import java.util.EventListener;

public interface WizardListener extends EventListener {
public void nextButtonClicked(WizardEvent evt);
public void previousButtonClicked(WizardEvent evt);
public void cancelButtonClicked(WizardEvent evt);
public void finishButtonClicked(WizardEvent evt);
public void helpButtonClicked(WizardEvent evt);
public void wizardActivated(WizardEvent evt);

}

Listing 4: PreviousButtonListener Class

private class PreviousButtonListener implements ActionListener {
public void actionPerformed(ActionEvent e) {

//broadcast WizardEvent out to everyone
WizardEvent evt;
evt=new WizardEvent(e,thisWizard_);
wizardAdapter_.previousButtonClicked(evt);

}//actionPerformed

}//PreviousButtonListener

Listing 5: NextEnterKeyListener

private class NextEnterKeyListener extends KeyAdapter {
public void keyReleased(KeyEvent k) {

if (enterKeyActive_){
if (k.getKeyCode() ==

java.awt.event.KeyEvent.VK_ENTER) {
WizardEvent evt;
evt=new WizardEvent(k,thisWizard_);
wizardAdapter_.nextButtonClicked(evt);

}//if keycode
}//enterKeyActive_

}//keyReleased
}//NextEnterKeyListener

Listing 6: UnfocusedTextArea Class

private class UnfocusedTextArea extends TextArea {
public UnfocusedTextArea(String s, int row, int col, int

visibility){
super(s,row,col,visibility);

}

public boolean isFocusTraversable(){
return false;

}

}

1/2 Ad

33VOLUME: 3 ISSUE: 6 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

34 • VOLUME: 3 ISSUE: 6Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Last time we discussed the general capabilities of

Jaguar CTS from Sybase. This month we’re going

to look at what it takes to build a very simple

component and place it inside Jaguar.

by Sean Rhody & James A. Walker

JDJ FEATURE

PART 2
Server Side Coding

35VOLUME: 3 ISSUE: 6 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Since a middle tier isn’t much good without something for it to talk
to, we’re going to use the Pubs2 database, which is an example data-
base provided with Sybase SQL Server 1.1 Specifically, we’ll use the
authors table which is described in Figure 1.

Imports
All of the example code is written in one file. It provides meth-

ods to do select, insert, update and delete on the authors table. To
work with Jaguar, in addition to whatever usual imports you use,
you must import a number of packages developed by Sybase. For
our example, we use what is shown in Table 1.

Methods
We’ll declare a class called Pubs2CompImpl, which stands for

Pubs2 component implementation. The “Impl” on the end of the
class name is sort of a Jaguar standard for the implementation of
server components – the actual component name will be
Pubs2Comp. In addition to the constructor for this class, there are
eight methods.

The code listing shows the class definition. The constructor for
Pubs2CompImpl is defined to throw a JException (Jaguar Excep-
tion), which will happen for certain events. There are also several
class variables, as shown in Table 2.

In actuality, it’s not difficult to write a component for Jaguar.
Some of the classes that Jaguar provides such as Connection, State-
ment, ResultSet and JCMCache make it easy to get data from an
SQL database and send it on to the client, as you’ll see in a
moment.

Listing 1 shows a couple of variables used to connect to the SQL
Server database that we are using as our target. We’ve used the
Sybase Pubs2 example database, which should be available at least
to the Sybase community. For those of you who have never heard
of this sample database, it contains information about an imagi-
nary publishing company, particularly things like authors, books,
royalties, etc. Our examples are all very straightforward (I hope) so
there should be no trouble following along.

The password and user name should be familiar to any data-
base developer. What might be new to some is that we’re connect-
ing with JDBC, and in particular with Sybase JConnect (hence the
tds portion of the DATASERVER string). The string tells you what is
shown in Table 3.

In our example the values are coded, but there is no reason why
a component cannot be created that will accept these parameters
in some setup function. This would allow the application to drive
what database to connect to.

The constructor for our sample class is shown in Listing 2. This
function illustrates the use of the Jaguar Connection Manager
(JCM). As we mentioned briefly in Part One of this series, one of the
services Jaguar provides is a Connection Cache. This allows a num-
ber of logical connections to be managed over a smaller number of
physical connections. Since database connection is one of the
biggest bottlenecks in application responsiveness, the cache pro-
vides a way to speed up the process.

JCM is a static class implemented by Jaguar. The getCache()
function returns a connection to the database that is stored in the
_cache variable. This function can throw an exception, which must
be caught. Should an exception occur, we use the Jaguar static
class method writeLog() to send a message to the server log and
set the cache to null. Finally, if we’ve been unsuccessful in con-
necting to the database, we throw a JException that will be caught
by the client.

Listing 3 shows the qt() function, which encloses a string in dou-
ble quotes. This is useful for dealing with strings and character
data in SQL statements.

The doQuery() function is shown in Listing 4. In our sample

code, there are two types of operations – those that return result
sets (select statements) and those that do not (insert, update and
delete statements). The doQuery() function is used to take an SQL
statement and return a result set. It takes a string containing the
select statement, a statement variable and a Connection variable.
It uses the statement object to execute the SQL statement, and
returns a result set or throws an exception. Basically, the function
is used to encapsulate the common logic of creating a result set.

Listing 5 shows the selAuthors() function, which makes use of
the doQuery() function to select all of the data from the authors
table. It starts by building an SQL statement into the SQL variable (I
apologize to all of you purists who hate select star – it was an
attempt to keep things simple). Within the try block, it then
attempts to get a connection from the cache. If that is successful, it
creates a statement using the createStatement() function. A result
set is generated using the doQuery() function. Next comes a very
innocent looking function that allows you to send a result set to a

Package Description

com.sybase.jaguar.util.* Utility methods for server and
client components

com.sybase.jaguar.sql.* Methods for processing
result sets

com.sybase.jaguar.server.* Methods for server components

com.sybase.jaguar.jcm.* Methods for working with
connection caches

Section Meaning
jdbc driver type

sybase database type

tds protocol type - TDS stands for tabular
data stream and is a Sybase protocol
associated with JConnect

89.86.200.1 The address of the server

5000/pubs2 The port the server listens on, and

Data Type Variable Name Description
final String DB_USER Constant username for

connecting to the database
final String DB_PWD Constant password for

connecting to the database
final String DATASERVER Constant connection

string for connecting to
the data server

String sql An SQL Statement
static Connection con A connection object
static Statement stmt A statement object
static ResultSet rs A result set object (the data

returned from a query)
JCMCache _cache A connection to the

Jaguar cache manager

Table 1

Table 2

Table 3

36 • VOLUME: 3 ISSUE: 6Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

client application. In this sense, Jaguar is
particularly well suited to Java because the
result set on the client side looks just as if it
came from a database (which, in fact, it did
here). There are other functions that allow
you to manually create and forward a result
set in a Jaguar server component so you’re
not limited to what you can pull out of a
database. For example, you could process
the results of a query and create a summa-
ry of the information, and send that instead
of a year’s worth of information. After the
result set is sent, the statement and the
connection are closed.

The remaining listings show other func-
tions that we’ve created to illustrate the
concepts of insert, update and delete.
Since these are probably familiar to you
from a conceptual standpoint, and the
code is very similar to the code used in
Listings 4 and 5, we won’t go into too much
detail. Instead, we’ll look at how we get the
code into Jaguar and close by discussing
how we will get the code to the client,
which will be the subject of Part 3 of this
article.

Registering the Component in
Jaguar

It’s not particularly difficult to register
components in Jaguar. You start Jaguar
manager and connect to the server. Then
you have several options on how you want

to make a component available to the
client. First of all, it’s important to under-
stand that for a component to be available
to a client application it must be part of a
package that is in turn part of the server.
Server can get kind of confusing in this con-
text, because while you can have multiple
named servers on a single machine, they all
have the same source for components. You
can, however, set up one named server for
development and another for deployment,
and place packages into deployment only
after they have been thoroughly tested in
the development named server.
Note that each named server listens on a
different port and can be started and
stopped independently of each other, but
they all share the same shared memory
space. Think of them as analogs to data-
base instances.

You can either create a component,
place it in a package and then place the
package into a server, or you can create a
component directly in a package that is
directly inside a server. One reason you
might want to progress in steps is because
you have to mark any method that returns
a result set as doing so. Unfortunately,
there’s no way that Jaguar can tell that you
want to return a result set. If your compo-
nent has a large number of methods, this
can be tedious. Also, if you have just rereg-
istered an existing component after some

changes, this will allow you time to set all of
these attributes before some overenthusi-
astic developer tries to test the changes. As
a side note, creating a second named serv-
er that listens on a different port allows you
to do the equivalent of putting Jaguar in sin-
gle user-mode. Because all the clients
expect to connect to a particular port (the
default is 7878), if you run a maintenance
instance on some other port (say 5858),
you can register components without inter-
ference from developers.

Figure 1 shows the registration of a com-
ponent. You have three choices initially:
ActiveX, Java or C/C++. After choosing Java
and selecting a logical component name (it
does not have to match your class name),
you have a choice of selecting a class file or
a JavaBean as the source. By default, Jaguar
looks in its \html\classes directory for the
source files, so you should put your com-
ponent here or below here in a package
directory if the component is to be part of
a package.

Once you’ve told Jaguar where the com-
ponent is, it pulls in all of the methods that
are declared void (the void declaration is a
restriction in 1.1 that will be lifted in the
next major release according to Sybase).
After you mark the methods as returning
result sets, you are almost done.

Part Three
In Part Three, we’ll show you how to gen-

erate Java stubs for use by client programs.
Then we’ll provide a fairly simple Java appli-
cation that will connect to Jaguar and exer-
cise the methods that we’ve created here.

About the Authors
Sean Rhody is a respected industry consultant and
a leading authority on PowerBuilder. Sean is also
editor-in-chief of the PowerBuilder Developer’s Journal
and is the editor of PowerBuilder 6.0: Secrets of the
PowerBuilder Masters. You can contact Sean at road-
hog@compuserve.com or roadhog@nac.net.

James A. Walker is a senior consultant with Sybase’s
NorthEast Professional Services. Currently, he is on a
project that utilizes Jaguar CTS and PowerJ. You may
reach him at walker@sybase.com.

Figure 1: Registering the component in Jaguar

Listing 1: Variable initialization.
final String DB_USER = "pubs2_user"; // Database user
name.
final String DB_PWD = "pubs2_user"; // Database user
password.
final String DATASERVER =
"jdbc:sybase:Tds:89.86.200.1:5000/pubs2"; // URL to the dataserv-
er.

// other variables

String sql;
static Connection con = null;
static Statement stmt = null;
static ResultSet rs = null;
JCMCache _cache = null;

Listing 2: Constructor.
public Pubs2CompImpl() throws JException
{

try

roadhog@nac.net walker@sybase.com

37VOLUME: 3 ISSUE: 6 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

38 • VOLUME: 3 ISSUE: 6Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

{ // Get a cache reference.
_cache = JCM.getCache(DB_USER, DB_PWD, DATASERVER);

}
catch (Exception e)
{

Jaguar.writeLog(true, "Pubs2CompImpl constructor getCache():
" +
e.getMessage());

_cache = null;
}

/*
** If we can't get a handle to the connection cache, log an

error and throw
** a Jaguar exception. The JException gets caught by the com-

ponent stub class,
** which in this case is Pubs2Comp.class.
*/
if (_cache == null)

{
Jaguar.writeLog(true, "Pubs2CompImpl(): Could not get con-

nection cache reference.");
throw new JException("Pubs2CompImpl constructor: Could not

create connection
cache.");

}
}

Listing 3: The qt function.
public String qt(String str)
{

return("\"" + str + "\""); // Enclose the string in quotes.
}

Listing 4: The doQuery function.
private ResultSet doQuery(String sql, Statement stmt, Connection
con) throws JException
{

int rows;

try {
rows = stmt.executeUpdate("set quoted_identifier off");
boolean results = stmt.execute(sql);
rs = stmt.getResultSet();

}
catch (SQLException sqle) {

Jaguar.writeLog(true, "doQuery(): " + sqle.getMessage());
}
catch (Exception e) {

Jaguar.writeLog(true, "doQuery(): " + e.getMessage());
}
return rs;

}

Listing 5: The selAuthors Function.
public void selAuthors() throws JException
{

sql = "SELECT * ";
sql = sql + "FROM authors ";
sql = sql + "ORDER by au_lname";

try {
Connection con = _cache.getConnection(JCMCache.JCM_FORCE);
Statement stmt = con.createStatement();
ResultSet rs = doQuery(sql, stmt, con);
JContext.forwardResultSet(rs);
stmt.close();
_cache.releaseConnection(con);

}
catch (Exception e) {

Jaguar.writeLog(true, "selAuthors(): " + e.getMessage());
}

}

Listing 6: The selAuthorsByLname function.
public void selAuthorsByLname(String au_lname) throws JException {

// Build the sql statement and put strings in double quotes.
sql = "SELECT * ";
sql = sql + "FROM authors ";
sql = sql + "WHERE au_lname = " + qt(au_lname) + " ";
sql = sql + "ORDER by au_lname";

try {
Connection con = _cache.getConnection(JCMCache.JCM_FORCE);
Statement stmt = con.createStatement(); // Create a connec-

tion statement.
ResultSet rs = doQuery(sql, stmt, con); // This returns a

result set so call doQuery().
JContext.forwardResultSet(rs); // Forward the

result sets to the client.
stmt.close(); // Release all

statement resources.
_cache.releaseConnection(con); // Release the con-

nection back into the pool.
}
catch (Exception e) {

Jaguar.writeLog(true, "selAuthorsByLname(): " + e.getMes-
sage());

}
}

Listing 7: The insAuthors function.
public void insAuthor(String au_id, String au_lname, String
au_fname,

String phone, String address, String
city,

String state, String country, String
postal_code) throws JException {

sql = "INSERT INTO authors VALUES(";
sql = sql + qt(au_id) + "," + qt(au_lname) + "," +

qt(au_fname) + ",";
sql = sql + qt(phone) + "," + qt(address) + "," + qt(city) +

",";
sql = sql + qt(state) + "," + qt(country) + "," +

qt(postal_code) + ")";

try {
Connection con = _cache.getConnection(JCMCache.JCM_FORCE);
Statement stmt = con.createStatement();
doActionQuery(sql, stmt, con);
stmt.close();
_cache.releaseConnection(con);

}
catch (Exception e) {

Jaguar.writeLog(true, "insAuthor(): " + e.getMessage());
}

}

Listing 8: The delAuthors Function.
public void delAuthor(String au_id) throws JException {

sql = "DELETE ";
sql = sql + "FROM authors ";
sql = sql + "WHERE au_id = " + qt(au_id);

39VOLUME: 3 ISSUE: 6 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

try {
Connection con = _cache.getConnection(JCMCache.JCM_FORCE);
Statement stmt = con.createStatement();
doActionQuery(sql, stmt, con);
stmt.close();
_cache.releaseConnection(con);

}
catch (Exception e) {

Jaguar.writeLog(true, "delAuthor(): " + e.getMessage());
}

}

Listing 9: The updAuthors function.
public void updAuthor(String au_id, String au_lname, String
au_fname,

String phone, String address, String
city,

String state, String country, String
postal_code) throws JException {

sql = "UPDATE authors ";
sql = sql + "SET au_lname = " + qt(au_lname) + ",";
sql = sql + " au_fname = " + qt(au_fname) + ",";
sql = sql + " phone = " + qt(phone) + ",";
sql = sql + " address = " + qt(address) + ",";
sql = sql + " city = " + qt(city) + ",";
sql = sql + " state = " + qt(state) + ",";
sql = sql + " country = " + qt(country) + ",";
sql = sql + " postalcode = " + qt(postal_code);
sql = sql + "WHERE au_id = " + qt(au_id);

try {
Connection con = _cache.getConnection(JCMCache.JCM_FORCE);
Statement stmt = con.createStatement();
doActionQuery(sql, stmt, con);
stmt.close();
_cache.releaseConnection(con);

}
catch (Exception e) {

Jaguar.writeLog(true, "updAuthor(): " + e.getMessage());
}

}

Listing 10: The doActionQuery function.
private void doActionQuery(String sql, Statement stmt, Connection
con) throws JException {

int rows = 0;

try {
rows = stmt.executeUpdate("set quoted_identifier off");
rows = stmt.executeUpdate(sql.toString());
rows = stmt.executeUpdate("commit");

}
catch (SQLException sqle) {
Jaguar.writeLog(true, "doActionQuery(): " + sqle.getMessage());

}
catch (Exception e) {

Jaguar.writeLog(true, "doActionQuery(): " + e.getMessage());
}

}

1/2 Ad

40 • VOLUME: 3 ISSUE: 6Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Although Java is cross-platform, its per-
formance and quality are greatly influenced
by the features of the underlying native
platform. Since the Java language and envi-
ronment includes concurrency and multi-
threading (MT) as integral components, the
native operating system’s multithreading
model and environment will greatly influ-
ence Java applications’ quality and perfor-
mance on that system.

Sun’s Java Virtual Machine (JVM), cen-
tral to the performance and scalability of
the Java Development Kit (JDK) for Solaris,
is designed to take full advantage of multi-
processor computing systems by using the
native multithreading capabilities of
Solaris. It performs bytecode interpretation
using native multithreading and fast syn-
chronization and, later this summer, will
feature an improved memory system.

These features provide developers with sig-
nificant performance boosts required for
successfully developing and deploying Java
applications that deliver solid performance
and fast response times under peak loads.

Java Multithreading
Implementation Comparisons

Understanding the architectural advan-
tages of one native MT environment/archi-
tecture over another is critical to an under-
standing of the advantages of one Java
implementation over another. Since a typi-
cal JVM runtime is implemented on top of
the traditional platform, a richer, architec-
turally superior MT platform will obviously
translate to a superior Java MT environ-
ment for Java applications on that platform.

The native OS threads model greatly
influences Java application performance

because, on Solaris and other platforms,
Java threads get mapped directly onto
operating system native threads. In this
sense, the Java thread model is a platform-
independent abstraction on top of native
threads that attempts to hide as many plat-
form-specific details from the applications
developer as possible and provide a single,
cross-platform abstraction.

However, there are platform-specific dif-
ferences between native Solaris threads
and native threads on other platforms that
affect Java threads' performance and
resource consumption on each platform.

Advantages of Java Multithreading
on Solaris

Java on Solaris leverages the multi-
threading capabilities of the operating sys-
tem kernel while allowing developers to
create powerful Java applications using
thousands of user-level threads, if needed,
for multiprocessor or uniprocessor sys-
tems through a very simple programming
interface.

The Java on Solaris environment sup-
ports the many-to-many threads model. As
illustrated in Figure 1, the Solaris two-level
architecture separates the programming
interface from the implementation by pro-
viding an intermediate layer, called light-
weight processes (LWPs). LWPs allow appli-
cation developers to rapidly create very
fast and cheap threads through a portable
application-level interface. Developers sim-
ply write applications using threads. The
runtime environment, as implemented by a
threads library, multiplexes and schedules
runnable threads onto "execution
resources," the LWPs.

Individual LWPs operate like virtual
CPUs that execute code or system calls.
LWPs are dispatched separately by the ker-
nel, according to scheduling class and pri-
ority, so they can perform independent sys-
tem calls, incur independent page faults
and run in parallel on multiple processors.
The threads library implements a user-level
scheduler that is separate from the system
scheduler. User-level threads are supported
in the kernel by the kernel-schedulable
LWPs. Many user threads are multiplexed
on a pool of kernel LWPs.

Solaris threads provide an application
with the option to bind a user-level thread
to an LWP or to keep a user-level thread
unbound. Binding a user-level thread to

ANYTHING NEW UNDER THE SUN

Though accessing Solaris-specific
features from Java applications is not
recommended, this list is included here
to illustrate the richness of the Solaris
MT architecture:
• The ability to define bound or

unbound threads for user- or system-
level control of application concur-
rency: note that a bound Java thread
may be created only via native meth-
ods.

• In addition, the application can con-
trol application concurrency through
a programmatic interface.

• The ability to bind a user-level thread
(through native methods) to an LWP
that is dedicated to a single proces-
sor: this feature is useful to real-time
applications running on multiproces-
sor systems.

• Synchronization primitives that have
interprocess scopes.

• Synchronization primitives that can
be placed in files and can have life-

times beyond that of the creating
thread.

• Direct native support for Java's dae-
mon threads: daemon threads are
threads that run in the background
and have dedicated exit semantics
enabling them to terminate indepen-
dently of the processes that use them.
Daemon threads are useful to
libraries that need to create threads
that are unknown to applications.
The Solaris JVM does not utilize
direct native support for Java's dae-
mon threads but may do so eventual-
ly.

Note: In general, accessing native
Solaris features using native methods
from a Java application is not recom-
mended. Such usage could make the
Java application nonportable because
it would not be 100% Pure Java and
would be tied to the Solaris platform
only.

by David Nelson-Gal, Director, Java Technology Group, Sun Microsystems
& Devang Shah, Engineer, Sun Microsystems

Solaris MT Architecture

41VOLUME: 3 ISSUE: 6 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

an LWP establishes an exclusive connec-
tion between the two. Thread binding is
useful to applications that need to main-
tain strict control over their own concur-
rency, such as those that require real-time
response.

Since most Java applications would not
require it, there is no Java API to perform
the binding. If required, a Solaris native
method call can be made to perform the
binding. Therefore, all Java threads are
unbound by default. Unbound user-level
threads defer control of their concurrency
to the threads library, which automatically
expands and shrinks the pool of LWPs to
meet the demands of the application's
unbound threads

The Solaris two-level model delivers
unprecedented levels of flexibility for meet-
ing many different programming require-
ments. Certain programs, such as window
programs, demand heavy logical paral-
lelism. Other programs, such as matrix mul-
tiplication applications, must map their
parallel computation onto the actual num-
ber of available processors. The two-level
model allows the kernel to accommodate
the concurrency demands of all program
types without blocking or otherwise
restricting thread access to system ser-
vices.

Java on Solaris
Solaris 2.6 is bundled with Sun's native-

threaded Java Virtual Machine 1.1 and
includes a Just-In-Time (JIT) compiler.
Working in conjunction with the JVM, the

JIT Compiler for Solaris recognizes method
compilation opportunities and serves to
reduce bytecode interpretation overhead.

Because the Solaris JVM uses Solaris
native threads, which provide multiproces-
sor support and true application concur-
rency to Java applications, Java threads
become true operating system threads and
provide the following benefits:
• Java threads run in parallel, providing

much greater performance for paral-
lelized Java applications on multiproces-
sor machines.

• Java threads harness true operating sys-
tem concurrency, providing greater per-
formance for multithreaded Java applica-
tions on both multiprocessors and
uniprocessors.

• Java applications interoperate with exist-
ing multithreaded applications in the
Solaris environment.

• The Solaris JVM is fully compatible with
the Java Developer Kit 1.1 from JavaSoft
and includes a JIT compiler, which sub-
stantially increases Java application per-
formance.

The Java on Solaris design uses system
resources efficiently as needed. Applica-
tions can have thousands of threads with
minimal thread-use overhead. Threads exe-
cute independently, share process instruc-
tions and share data transparently with the
other threads in a process. Threads also
share most of the operating system state of
a process, can open files and permit other
threads to read them and allow different

processes to synchronize with each other
in varying degrees.

Evaluating Multithreading Capabilities
with Real-World Application

While benchmarks can be a valuable
tool to assess the performance and stabili-
ty of an application, the true test is in real-
world implementation.

The latest in JVM technology for Solaris
is currently being evaluated as part of an
early access program by several real-world
Internet applications, including Vitria’s
BusinessWare application integration soft-
ware and Volano’s VolanoChat, which
allows Web developers and businesses to
create easily customized chat rooms for
their public Websites and corporate
intranets.

As a result, these highly threaded, highly
networked, multiuser applications are real-
izing tremendous gains in Java perfor-
mance, further demonstrating that the Java
on Solaris threading model delivers the best
combination of speed, concurrency, func-
tionality and kernel resource utilization.

Because of the flexible manner in which
the Solaris Java Virtual Machine maps Java
threads to its kernel, there are no prede-
fined limits on the number of threads that
can be used per application, according to
John Neffenger, CTO, Volano LLC. “We have
reason to believe that the new version of
the Solaris JavaVirtual Machine coming out
from Sun later this summer will be the plat-
form with all the speed, scalability, and sta-
bility that Java deserves.”

PRIVATE Multithreaded User Threads Standard POSIX MT Development Thread-Aware Thread Program- Shipping
Feature Kernel Libraries Interface[2] Architecture Tools Debugger ming Class Applications Now

AIX Yes Yes Yes one to one Yes Yes Yes Yes

Generic DCE Varies (1) Yes No (Draft 4) many to one No No Yes Yes

OSF/DCE Yes Yes No (Draft 6) many to one Yes Yes Yes Yes

NT Yes Yes No one to one NA Yes Yes Yes

OS/2 No Yes No one to one No Yes Yes Yes

Solaris Yes Yes Yes many to many Yes Yes Yes Yes

HP-UX Yes No No n/a No No No No

IRIX No No No n/a No No No No

Notes:
No entries for the high-level features indicate that the specified environment is not

present, with the exception of the user threads libraries where it indicates "not thread-
safe." The threads implementations shown in this table are the most recent versions
available on the supporting platforms, except for the HP-UX and IRIX information,
which is not quite current.

1. There have been a number of drafts to the POSIX 1003.1c specification. Draft 10
is the only specification to have been endorsed by POSIX as the standard.

2. Depends on the operating system on which DCE is implemented.
NA = Not Available
n/a = Not Applicable

Comparative Overview of Selected Threading Environments.

Figure 1

42 • VOLUME: 3 ISSUE: 6Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

ADVERTISER INDEXADVERTISER INDEX
Borland 55
www.borland.com 408 431-1000

Bristol Technology 59
www.bristol.com 203 438-6969

Cold Fusion Developer’s Journal 48
www.sys-con.com 914 735-1900

Coriolis 63
www.coriolis.com 800 410-0192

Data Representations 49
www.datarepresentations.com 888 307-9550

Draw Computing 23
www.openworlds.com 215 38820390

InstallShield Software Corporation 15
www.installshield.com 800 374-4353

KL Group BC&11
www.klg.com 800 663-4723

Kuck & Associates, Inc. 21
www.ibm.com 888 524-0101

Ligos 19
www.ligos.com 415 437-6137

Advertiser Page
Mecklermedia 61
www.internet.com 800 500-1959

MindQ 32
wwwmindq.com 800 646-3008

Object Matter 42
www.objectmatter.com 305 718-9101

ObjectShare 17
www.objectshare.com 800 973-4777

ObjectSpace 67
www.objectspace.com 972 726-4100

Object Management Group 65
www.omg.org 508 820-4300

Platinum Technology 16
www.platinum.com/vrcreator 800 291-6509

JDJ Online 39
www.sys-con.com 914 735-1900

PreEmptive Solutions 53
www.preemptive.com 216 732-5895

Progress/Cohn & Godly 37
www.apptivity.com 800 477-6473

Progress Software 27
www.protospeed.progress.com 800 477-6473

ProtoView 3
www.protoview.com/java 811 231-8588

Roguewave 2
www.roguewave.com 800-487-3217

Silicon Graphics 25
www.cosmo.sgi.com 888 91-COSMO

Slangsoft 13
www.slangsoft.com 972 3-751-8127

SunTest 4
www.suntest.com 415 336-2005

Thought, Inc. 45
www.thought.com 415 836-9199

Visionary Solutions, Inc. 42
www.visolu.com 215 342-7185

VRML Developer’s Journal 33
www.sys-con.com 914 735-1900

Zero G. Software 6 & 7
www.zerog.com 415 512-7771

1/4 Ad1/4 Ad

Advertiser Page Advertiser Page

43VOLUME: 3 ISSUE: 6 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

The world is based on
objects. In the world of
programming, objects
are your friends, espe-

cially in an environment
like Java. Objects in Java

are known as JavaBeans™, or
just Beans. After all, you can’t make Java
without Beans. ProtoView is definitely a
company that wants you to use their
Beans. They have a collection of Jav-
aBeans that will help you extend your Java
development and enhance your applica-
tions.

ProtoView is no stranger to the object-
based, component market. They also mar-
ket ActiveX components that can be used
with Microsoft Visual Basic, Internet
Explorer and any other ActiveX Java Virtu-
al Machine.

With ProtoView’s release of JSuite, they
have successfully raised the bar on usable
JavaBeans. JSuite consists of five main Jav-
aBeans components with over a score of
different API functions. These components
are CalendarJ, DataTableJ, TabJ, TreeViewJ
and WinJ Component Library.

CalendarJ
Have you ever had to write a schedul-

ing program or appointment manager and
wanted to include a calendar? Even if you
haven’t, you’ve probably had to deal with
a date field and would have liked to attach
a calendar to a button. The CalendarJ Bean
is made up of two different Beans, Calen-
dar and DatePlus components. The Calen-
dar component gives you the ability to dis-
play a single month calendar with drop-
downs for changing the month and year. It
also allows you to display a calendar with
three, six, or all twelve months on one
form.

The DatePlus component is designed to
display and edit a text string that repre-
sents a date. Built into the component is
the ability to validate the date your user
enters in without having to program a date

validation routine. For
example, if they enter 02
in the month field, the
component will not allow
you to enter 29, 30, or 31
for the day. (Note: It will
allow you to enter 29
assuming the year is a
leap year.) Also built into
the component is reuse of
the Calendar component
in the form of a dropdown
calendar. When your user
clicks on the button, you
can display a one, three, six, or twelve-
month calendar. When the user selects a
date from the calendar, it will display the
selected in the DatePlus field.

DataTableJ
Displaying information in a tabular for-

mat is very common. This component is
more extensible than your average “grid”
component. Most grids allow you to add
data to the grid, resize rows and columns
and probably colors of rows and columns.
The DataTableJ allows for in-cell editing,
check boxes within the cell, dropdown list
boxes, graphics within a cell and more.
With all this extensibility, you might think it
was a difficult object model to work with.
This is not true. It was very easy to add and
update information. This version has full
JDBC support and dbAnywhere object
libraries (Visual Cafe Support) built into the
component.

TabJ
Ever since Quattro Pro for Windows, the

use of tabs has been very prevalent in Win-
dows applications. This component allows
you to easily segment your information into
logical groups. The tab placeholders can be
placed along any side of the tabs: left, right,
top or bottom. You can place any number of
tab placeholders on the tab component. If
all the tabs can’t be viewed on the form at
one time, a navigation bar is provided to

slide back and forth through the tabs. One
caveat is that this component is only avail-
able for JDK 1.1 environments.

TreeJ
The tree-type display structure is not a

new idea, it’s just that Windows 95 made
it popular. Normally, most WebArchitects
might attempt to construct this function-
ality through JavaScript. If you like a chal-
lenge, go right ahead, but why should you
when you have a fine component like
TreeJ? TreeJ allows you to create, expand
and collapse the structure by pressing
the + and – buttons. You can assign any
16x16 pixel icon you like to be displayed
on the tree’s node. You can edit a node’s
description either in-line like Windows

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
ProtoView JSuite
ProtoView Development Corporation
2540 Route 130
Cranbury, NJ 08512
Sales (800) 231-8588
Fax (609) 655-5353
E-Mail info@protoview.com
Web: http://www.protoview.com
$399 ($1,299 With Source Code)

ProtoView JSuite
by ProtoView

PRODUCT REVIEW

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

by David Jung

Plenty of good JavaBeans™ to pick from

44 • VOLUME: 3 ISSUE: 6Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Explorer or through a text box like Win-
dows Registry.

WinJ
The WinJ components consist of 13 dif-

ferent Beans ranging from Buttons to Time
display controls. What sets these compo-
nents apart from other objects that come

with your Java develop-
ment environments? It’s
their extensive customiza-
tion. For each component,
you can change the com-
ponent’s borders (width,
type and bevel), drop
shadows around the com-
ponents, font style and
display background.

What’s not provided by
most Java development
environments is the ability
to change the looks of
most components. WinJ
Buttons can look rectan-
gular, circular or square
with images. There are
components that allow for
different types of data
entry, like currency, mask
edit for Social Security or
phone numbers and vari-
ous date and number
entries.

Ease of Use
The object model for

these Beans has been
thought out very well. The
methods and procedures

are clearly documented in the HTML-based
help files. If your Java development envi-
ronment is JavaBean-compatible, like
SuperCede and Visual Café for Java, the use
of these Beans is even easier. You can drag
the component you want on to your form
and modify the Bean’s properties in a cus-
tom dialog box. Figure 1 illustrates

SuperCede diplaying Properties window of
the PVCalendar Bean. When you press the
Customize button at the button of the Prop-
erties window, you see the JSuite’s imple-
mentation of the Properties windows, as
shown in Figure 2.

Documentation
Don’t expect a thick manual when you

purchase these components because Pro-
toView ships the documentation on HTML
pages. It is very advantageous to ProtoView
because they can provide you with an
updated document when there is a change
to a component without having to mail out
new manuals. This can be frustrating for
you, the developer, because HTML docu-
ments are great for the Web but can be
cumbersome for component documenta-
tion.

Finding information in a manual isn’t
always easy but at least printed information
has an index to rely on. HTML documents
rely on hypertext linking which doesn’t
always translate well to development docu-
mentation. It would have been a better ser-
vice to provide that documentation in a
PDF (portable document format) file. That
way, searching for information can be more
accurate and printing out information can
be more exact.

Conclusion
As part of an applet, they don’t take a

long time to initialize and start over a stan-
dard 28.8 modem connection. The best
part is they are written in “100% Pure
Java”. This is an important issue to some,
but a bigger concern is whether they will
run in both Navigator/Communicator and
Internet Explorer and they do. As the Jav-
aBean market starts to grow, it’s anyone’s
guess when it will grow as exponentially as
the Visual Basic component market. In the
here and now, the JavaBeans found in the
JSuite tool set are definitely components
to be looked into. They are very rich in
features and have a lot to offer any Java
developer. Whether you purchase the Jav-
aBeans separately as needed or purchase
them as the suite, you won’t be disap-
pointed.

About the Author
David Jung is a senior programmer analyst for a
national medical center in Southern California. He
is a key architect for all client/server development
for the organization. He is also co-author of several
Visual Basic books, including “Visual Basic 5
Client/Server How-To” and “Visual Basic 5
Superbible Set” (Waite Group Press). David can
be reached at davidj@vb2java.com.

Figure 2

davidj@vb2java.com

Figure 1

45VOLUME: 3 ISSUE: 6 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

46 • VOLUME: 3 ISSUE: 6Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

With all the hype and press concerning
Servlets lately, it seems as though this Java
technology is ready to replace CGI as the
preferred way to perform server-side pro-
cessing on Web servers. Unfortunately for
Servlets, just being better than CGI at server-
side processing is no longer enough to be
the de facto standard. Last year, a whole new
approach to dynamic Web development
turned CGI on its head. This new technology
was called Active Server Pages, brought to
us by our friends in Redmond. Offering true
Rapid Application Development and a
choice of scripting languages to use, Active
Server Pages quickly dethroned CGI on IIS
Servers and made developers much more
productive. Recognizing this fact, Sun
Microsystems has offered a new version of
its Java Web Server that supports the
dynamic compilation of Web pages mixed
with Java code. Their current offering uses
Web pages with a JHTML extension, which
are compiled on the fly into Servlets. At
JavaOne this year, Sun and third-party
Servlet Engine providers, such as IBM and
Live Software, demonstrated JavaServer
Page technology as an evolutionary step
from JHTML. JavaServer Pages have been
made to look just like Microsoft’s Active
Server Pages in an attempt to lure their Web
developers into the Java fold. It’s a great idea
that marries the productivity of rapid Web
development to the most powerful language
in the world…Java. JavaServer Pages are in
beta right now and are not suitable for pro-
duction use; therefore this article will focus
on the use of JHTML on the Java Web Server.
JHTML pages will enable you to be just as
productive as you would using either ASP’s
or JSP’s, the only difference being the special
tags that are defined within each.

Because a Java development tool is not
required, the Java Web Server and your
favorite HTML editor are all you’ll need to get
started. If you don’t own the Java Web Serv-
er, you can download a 30-day trial version at
http://java.sun.com/javastore/jserv/buy_try.

html. To begin, create a basic Web page in
the public_html directory of the Java Web
Server and save it with the extension .jhtml.
You will not be able to view this JHTML page
by double-clicking on it; you must first open
your browser and then type in the proper
URL to view it. You’ll notice that whenever
you make changes to your JHTML page that
it will take about five seconds for it to open in
your Web browser. This is because the Java
Web Server compiles your JHTML page into
a Servlet every time you make a change to it.
The good thing to know is that unlike Active
Server Pages that are interpreted every time
they’re requested, your JHTML-created
Servlet is compiled and then stays resident
in memory for fast execution.

The first topic covered in this article is
the new Java Tags that you’ll mix in with
your HTML Tags. The most commonly used
tag is the <java> tag. This tag tells the Java
Web Server that it will find Java code to com-
pile in between <java> and </java>. If you
want to insert Java code inside the structure
of an HTML tag, you will put your code
between two ticks ` ` instead of two <java>
tags. To print the value of your Java code,
you would insert that code inside the <java
type=print> </java> tags. To import Java
classes into your Web page, you will first use
the <java type=import> tag followed by the
classes you wish to import. A number of
other Java tags are available, but the ones
I’ve just covered are the only ones we’ll need
to proceed.

There are a few things that I recommend
you put at the top of your JHTML pages to
ensure that you never have any problems
utilizing all the features that the Servlet API
provides. For starters, add the code in List-
ing 1 to the top of your page. Then add the
code in Listing 2 to see an example of using
a Java loop to dynamically build a table so
that you can get a feel for how your code
should look in the context of a Web page.

The next topic we’ll discuss is the use of
cookies. JHTML pages can send and receive

cookies to a user’s browser to store informa-
tion. The code in Listing 3 demonstrates
their use. You’ve probably noticed the use of
the code “out.print();” in Listing 3. This code
is used to send data back to the browser
from inside two <java> </java> tags.

Cookies are often utilized to track sessions
or maintain state. An easier way to do this is
to use the Session Tracking feature that is
built into the Java Web Server. Session vari-
ables use either cookies or URL rewriting to
store your Java variables throughout the life-
time of a particular session with a particular
user. Using Session variables eliminates the
need for the manual use of cookies to main-
tain variables and state. To use Session vari-
ables on a particular page, you must first
include this line of code:

<java>
HttpSession session =
request.getSession(true);
</java>

With this code added, you can add,
retrieve and remove Session variables using
the code shown in Listing 4.

Another way that data is maintained
between Web pages or sent to the server is
through the use of form submissions and
QueryStrings. With JHTML pages, you can
receive data that is sent from another page
using the getParameter() method. Listing 5
shows the code to retrieve submitted data.

Many times you may find yourself sub-
mitting data to another JHTML page whose
sole purpose is to take that data and insert it
into a database. Usually, after doing such a
database operation, you will want to redirect
the user to another Web page. This is accom-
plished using the sendRedirect() method.
An important thing to remember is that you
can use it only before you send any data
back to the Web browser; once you’ve sent
out any kind of data, the sendRedirect
method will fail. Below is the code required
to redirect a Web page:

<java>request.sendRedirect("index.html")</java>

An important thing to note when using
this feature is that the closing </java> tag

Java Replacing CGI to perform server-side processing on Web

Dynamic Page Compilation
with the Java Web Server

JAVA WEB SERVERS

by Robert Tiffany

47VOLUME: 3 ISSUE: 6 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

sends out a CRLF to the browser, which is
enough to make your redirect code fail. List-
ing 6 is an example of code that will fail. List-
ing 7 shows you how to make the redirect
code work when you have </java> tags
above it.

The next thing to discuss is how to refer-
ence core and third-party classes from a
JHTML page. Accessing core Java classes
from your JHTML page is straightforward
and requires no special settings. You’ve
already seen the code to import core classes
in Listing 1. Accessing third-party classes, as
well as classes you’ve built yourself, is a lit-
tle tricky and requires a few extra steps. The
first thing you must do is create a "classes"
directory off your Java Web Server directo-
ry: C:\JavaWebServer1.1\classes. A CLASS-

PATH is not required, since the Java Web
Server picks up the "classes" directory on
startup. Subdirectories of your "classes"
directory will mirror your different Java
Packages. The Java Web Server requires that
all of your classes be inside a package. The
SendMail class that will be used in the next
example references a package called smtp. A
proper directory path enabling this class to
work would be C:\JavaWebServer1.1\class-
es\smtp\SendMail.class. To reference this
class in your JHTML file, you must first
import it at the top of your page just as you
do with core classes. In the case of the Send-
Mail class residing in the smtp package, your
code will look like Listing 8.

Finally, because nearly everyone uses
databases with their Web pages, Listing 9

illustrates an example of JHTML database
access. This article should provide you with
enough information to get started on your
own with JHTML.

About the Author
Robert Tiffany is a senior technology consultant with
Insource Technology in Houston, TX. He is currently
working on an e-commerce Website using servlet
technology for the George Bush Presidential Library.
Robert has worked on a lot of Internet/
intranet/extranet development with both Active Serv-
er Pages and Enterprise Java technologies. Past
employers have included Boeing, Microsoft and Real
Time Data. You can reach Robert at
robertt@insource.com.

Listing 1.
<java type=import>
java.io.*
javax.servlet.*
javax.servlet.http.*
</java>

Listing 2.
<java type=import>
java.io.*
javax.servlet.*
javax.servlet.http.*
</java>

<html>
<head>
<title>Java Loop</title>
</head>
<body>

<table>
<java> for (int I = 0; I < 5; I++) { </java>
<tr>
<td>
<java type=print> ”” + I + “” </java>

</td>
</tr>
<java> } </java>
</table>

</body>
</html>

Listing 3.
<java type=import>
java.io.*
javax.servlet.*
javax.servlet.http.*
</java>

<html>
<head>
<title>Java Cookies</title>
</head>
<body>

<java>
//sending cookies

Cookie outCookie = new Cookie(“Name”, “Value”);
outCookie.setMaxAge(2 * 24 * 60 * 60);
response.addCookie(outCookie);

//receiving cookies
Cookie inCookie[] = request.getCookies();
for (int I = 0; I < inCookie.length; I++) {
out.print(inCookie[I].getName());
out.print(inCookie[I].getValue());
}
</java>

</body>
</html>

Listing 4.
<java>
session.putValue("Item", "Shirt"); //adds an Item called Shirt
session.getValue("Item") //gets the Item and returns Shirt
session.invalidate //kills this session
if (session.isNew()) { //checks to see if you're new
...do this...;
}
</java>

Listing 5.
<java>
String x = request.getParameter(“Name”);
out.print(x);
</java>

Listing 6.
<java type=import>
java.io.*
java.net.*
</java>

<java>request.sendRedirect("index.html")</java>

Listing 7.
<java type=import>
java.io.*
java.net.*
</java><java>request.sendRedirect("index.html")</java>

Listing 8.
<java type=import>

robertt@insource.com

48 • VOLUME: 3 ISSUE: 6Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

smtp.SendMail
</java>

<html>
<head>
<title>Send some mail</title>
</head>
<body>

<java>
SendMail x = new SendMail();
x.smtpHost = "mx2.insource.com";
x.smtpFrom = "robertt@insource.com;
x.smtpToEmail = "briant@insource.com;
x.smtpToName = "Brian Towles";
x.smtpSubject = "The Java Web Server can send email";
x.smtpMessage = "Hello World";
String result = x.Send();
out.print(result);
</java>

</body>
</html>

Listing 9.
<java type=import>
java.sql.*
</java>

<html>
<head>
<title>dbselect</title>
</head>

<body>

<java>
try {
//load oracle driver
DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriv-
er());
//connect to database
Connection cn =
DriverManager.getConnection(“jdbc:oracle:thin:@host:1521:orcl”,
“scott”, “tiger”);

//query
Statement st = cn.createStatement();
ResultSet rs = st.executeQuery(“select ename from emp”);
</java>

<table>
<java> while (rs.next()) { </java>
<tr>
<td>
<java type=print>rs.getString(1)</java>

</td>
</tr>
<java> } </java>
</table>
<java>
rs.close();
st.close();
cn.close();
} catch(Exception e){ out.print(e.getMessage());}
</java>
</body>
</html>

1/2 Ad

49VOLUME: 3 ISSUE: 6 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

50 • VOLUME: 3 ISSUE: 6Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

If you are experienced in using the
POSIX threads package (pthread) in C or
C++, one of the first things you may have
noticed while learning Java is that thread
semantics is one area where Java’s design-
ers did not try to emulate C semantics. The
next thing you may have noticed is that the
Java approach seems awkward in many cir-
cumstances.

For instance, consider the timer()
method shown in Listing 1. You might want
to add a method like this to a long-running
application to reassure yourself that your
Java Virtual Machine has not gotten hung.
Since this method contains an infinite loop,
it only makes sense to run it in its own
thread. The POSIX threads model allows
you to pass a function pointer and an argu-
ment pointer to the pthread_create()
method. The specified function is executed
in its own thread of control and the argu-
ment pointer can be used to pass data
structures into or out of the method. If you
are used to programming with this threads
model, you would expect to be able to
invoke the timer() method using a con-
struct like:

new Thread(this.timer(5)).start();

Unfortunately, Java’s semantics do not
support this. Instead, to start a thread in
Java, your class must implement the
Runnable interface. (A similar option,
which in the interest of clarity we will not
discuss, is to extend the Thread class.) You
can then pass an instance of your Runnable
class to the Thread constructor. Calling the
resulting Thread object’s start() method
will cause the run() method of your object
to be invoked in its own execution thread.
The Runnable interface does not allow the
run() method to return a result, take any
parameters or throw any exceptions. The
run() method must also be public to satisfy
the Runnable interface. With these seman-
tics in mind, the AppTimer class of Listing 2
shows a naive solution to the problem of

invoking the timer() method in a separate
thread and passing it a parameter.

The programming approach (or “design
pattern”) illustrated by Listing 2 is simple.
When you have a method you wish to exe-
cute in a thread, do the following:
• Change your class definition to include

“implements Runnable.”
• Add a public run() method to your class

that returns void, takes no parameters
and throws no exceptions.

• At the place in your code where you want
to start the method, put its parameters in
instance variables, pass the “this” refer-
ence to the Thread constructor and call
start() on the new Thread.

• Code your run() method to invoke the
target method and pass it the instance
variables [or move the code from the tar-
get method into run()].

This design pattern does get the job
done. That is, the AppTimer class in Listing
2 is successful in running timer(peri-
odLength) in its own thread. In spite of this,
the approach is unappealing for several rea-
sons. The main drawback is that it forces
you to expose a public run() method that is
not really intended for use by clients. Some-
one looking at Listing 2 could easily be con-
fused about how AppTimer’s designer
expected the class to be used. If someone
mistakenly passes an instance of this class
to a Thread constructor and starts it, it will
function incorrectly. However, that type of
usage is normally inferred by implementing
Runnable(). There are also other problems
with this approach. It is difficult to use in
classes that already expose a public run()
method for client use, and it is awkward if a
class contains several thread driven-meth-
ods.

A more elegant AppTimer implementa-
tion, using a design pattern that overcomes
these shortcomings, is shown in Listing 3. It
defines an inner helper class (TimerHelper)
that hides the run() method. An inner class
is a class that is defined inside a top-level

class as a member of the top-level class. As
long as the inner class and its constructors
are not public, instances cannot be created
outside its defining scope and it is not part
of the interface of the top-level class.

Using inner classes to manage threads
within a class is an attractive alternative to
the approach taken in Listing 2. Not only
does it relieve the top-level class of having
to implement Runnable and expose a spuri-
ous and confusing public run() method, but
it also imparts considerable flexibility. The
helper class associated with any method
can be customized to provide a variety of
services such as facilities to stop the
method, query its progress or retrieve its
result.

The design pattern of Listing 3 general-
izes as follows:
• If you have a class, <class>, with a

method, <<method>(<signature>)> that
you want to run in its own thread of con-
trol, create an inner class within <class>
named <Method>Helper which imple-
ments Runnable.

• Create a constructor for <Method>Helper
with the signature <Method>Helper
(<class>, <signature>).

• Code the constructor to place its para-
meters in instance variables, construct a
Thread passing the “this” reference and
call start() on the new Thread Code
<Method>Helper’s run() method to pass
the parameters saved by the constructor
to the top-level class’s <method>.

• At the place in the code where you wish
to start <method>, construct a new
<Method>Helper(this,<parameters>).

While this approach is a considerable
improvement compared to trying to place
all of a top-level class’s thread management
logic in its run() method, it still has some
drawbacks. The main problem is that it may
lead to top-level classes that are littered
with inner helper classes. Since all the
helper classes have similar logic, the code
can become tedious to develop, read and
maintain.

Fortunately, you can use the capabilities
provided by Java’s Reflection API (intro-
duced in JDK 1.1) to implement a single
class that performs all the thread manage-
ment functions of this design pattern. The

Making Threads Flexible
Using Inner Classes and the Reflection API

for Robust Thread Management

JAVA PROGRAMMING TECHNIQUES

by Philip Rousselle & Mike McNally

http://www.JavaDevelopersJournal.com 51Java DEVELOPER’S JournalVOLUME 3 ISSUE 5 •

Reflection API allows a method name and
signature (represented as a String and an
array of Class objects) to be passed among
methods. Code receiving such information
can determine, at runtime, if a particular
class has a method with the specified name
and signature, and invoke it if so. These
facilities are used in the ThreadHelper class
shown in Listing 4 and the much simplified
AppTimer implementation of Listing 5
to launch a thread into the timer()
method.

The ThreadHelper con-
structor receives a refer-
ence to an Object that
contains a method to be
executed in an inde-
pendent thread, the
name of the target
method and an
Object array contain-
ing the parameters to
be sent to the
method. By calling the
getClass() method on
each parameter [get-
Class() is inherited by all
classes from Object],
ThreadHelper builds an array
of Class objects that identifies
the signature of the target method.
Calling getDeclaredMethod() on the
target object’s class and passing the target
method’s name and signature returns the
Method object for the target method. The
Method object is passed to Thread-
Helper’s run() method, along with its para-
meters, in instance variables. When
ThreadHelper passes its “this” reference
to the Thread constructor and calls start()
on the new Thread, its run() method is
started in a new thread of control. The
run() method retrieves the target
method’s Method object and parameter
and invokes the target method.

Because ThreadHelper is intended for
general use, it should provide more func-
tion than the specialized TimerHelper of
Listing 3. Specifically, it needs to allow its
client to retrieve any result that might be
returned by the target method and to allow
the client to (optionally) block and await
the completion of the method. These capa-

bilities are provided by ThreadHelper’s
join() method. This join() method is equiv-
alent to the join() function provided in C by
the POSIX pthread package. The boolean
completed variable is used by the join()
function as a synchronization semaphore. If

completed has not been set, join() uses the
wait() function to block. When the target
method returns, run() calls signalComple-
tion() to set the semaphore and use noti-
fyAll() to wake up any threads that might be
waiting in join(). These actions should be
performed only in a “synchronized”
method, which is why they are not simply
performed in run().

It is also possible, of course, to add a
variety of useful methods to ThreadHelper.
Some functions like isComplete() or kill()
are trivial to add. Others like setTimeOut()
are more difficult. The ThreadHelper class
shown in Listing 4 illustrates the basic con-
cepts involved in implementing a general
helper class to encapsulate thread manage-
ment primitives. This technique can be

used to relieve other classes from having to
implement Runnable or use inner classes to
exploit Java’s powerful multithreading
capabilities.

ThreadHelper does have one subtle but
significant limitation. The parameters
passed to methods by way of the Thread-
Helper constructor must be classes rather
than Java primitive types. That is, the

timer() method of Listing 1 must be
modified to take an input parame-

ter of type Integer rather than
int. This allows the version

of AppTimer shown in List-
ing 5 to pass the input

parameter as “new Inte-
ger(periodLength)”
rather than simply
periodLength. This
limitation comes
from ThreadHelper
calling getClass() for
each item in the para-
meter array. Primitive

types (like int) don’t
inherit from Object and

therefore do not have a
getClass() method.

The ThreadHelper class
is more complex than Timer-

Helper (see Listing 3), and if you
rarely use thread-driven logic, then

occasionally incorporating it into special-
ized inner classes may be adequate. How-
ever, the Reflection API makes it possible
to provide a general solution with only
slightly more effort.

About the Authors
Philip Rousselle develops systems and network man-
agement software for Tivoli Systems. He is currently
designing techniques for efficiently communicating
event data (alerts) over large distributed systems. He
is also investigating how network topology informa-
tion can be used to enhance systems management
software. He can be reached at philr@tivoli.com.

Mike McNally is the lead designer of distributed
monitoring products for Tivoli Systems in Austin, TX.
He can be reached at m5@tivoli.com.

Listing 1.
void timer(int interval) {

long startTime = System.currentTimeMillis();

while(true) {
try {

Thread.sleep(interval * 1000);
}

catch(InterruptedException ex) { }

System.out.println(
"The application has been running for "
+ (int) ((System.currentTimeMillis()

- startTime) / 1000) + " seconds");
}

}

Listing 2.
public class AppTimer implements Runnable {

philr@tivoli.com m5@tivoli.com

“Not only does using

inner classes to manage

threads relieve the top-level

class of having to implement

Runnable and expose a spurious

and confusing public run()

method, but it also imparts

considerable flexibility”

52 • VOLUME: 3 ISSUE: 6Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

int periodLength;

public AppTimer(int newPeriodLength) {

periodLength = newPeriodLength;
Thread timer = new Thread(this);
timer.setDaemon(true);
timer.start();

}

public void run() { timer(periodLength); }

// void timer(int) see Listing One

Listing 3.
public class AppTimer {

class TimerHelper implements Runnable {

AppTimer target;
int periodLength;

TimerHelper(AppTimer newTarget,
int newPeriodLength) {

target = newTarget;
periodLength = newPeriodLength;
Thread thread = new Thread(this);
thread.setDaemon(true);
thread.start();

}

public void run() {

target.timer(periodLength);
}

public AppTimer(int periodLength) {

TimerHelper helper =
new TimerHelper(this, periodLength);

}

// void timer(int) see Listing 1
}

Listing 4.
import java.lang.reflect.*;

public class ThreadHelper implements Runnable {

Object targetObject;
Method targetMethod;
Object[] parameters;
Thread thread;
Object result;
boolean completed = false;

public ThreadHelper(Object newTarget,
String methodName,
Object[] newParameters)

throws java.lang.NoSuchMethodException {

targetObject = newTarget;
parameters = newParameters;
Class[] parameterTypes =

new Class[parameters.length];

for (int i = 0; i < parameters.length; i++)
parameterTypes[i] =

parameters[i].getClass();

targetMethod = targetObject.getClass().
getDeclaredMethod(
methodName, parameterTypes);

thread = new Thread(this);
thread.setDaemon(true);
thread.start();

}

public void run() {

try {
result = targetMethod.invoke(

targetObject, parameters);
}

catch(InvocationTargetException ex) {
System.err.println(ex);

}
catch(IllegalAccessException ex) {

System.err.println(ex);
}
signalCompletion();

}

synchronized void signalCompletion() {

completed = true;
notifyAll();

}

public synchronized Object join() {

while (!completed) {
try
{

wait();
}
catch(InterruptedException ex) { }

}
return result;

}
}

Listing 5.
public class AppTimer {

public AppTimer(int periodLength) {

Object[] parm = { new Integer(periodLength) };
try {

new ThreadHelper(this, "timer", parm);
}
catch(java.lang.NoSuchMethodException ex) {

System.err.println(ex);
}

}

// void timer(Integer) see Listing 1
}

53VOLUME: 3 ISSUE: 6 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

54 • VOLUME: 3 ISSUE: 6Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

What Is a Widget?
A widget is a reusable graphical user-

interface (GUI) component that operates
synergistically with callbacks (a mecha-
nism by which a user’s action on a software
application’s GUI is connected to the code
implementing the application’s response to
this action. The Implementing Callback arti-
cle last month showed how the callback
mechanism can be implemented in Java
and how standard AWT components can be
extended to support it. Like callback, wid-
get is a familiar concept to X Toolkit and
Motif programmers. This follow-up article
will introduce the reader to the Widget
interface class that helps in the implemen-
tation of the widget extension to AWT or
other GUI components.

Advantages of Using the
Widget Interface Class

The Implementing Callback article
showed how the use of the callback
mechanism allows the programmer to
separate the application’s GUI code
from the code implementing the appli-
cation’s response to any user interac-
tion with the GUI. To make use of Call-
backable and CallbackList classes intro-
duced in that article, GUI component
classes have to be widget-ized. However,
there’s no mechanism in place that
requires the widget developer of new
GUI components to conform to a stan-
dard widget structure. A standard struc-
ture has many advantages. In a way, it is
a contract between the widget developer and
the widget user, in that it guarantees to the
widget user the existence of certain widget
attributes, such as names. The solution is to
use the Java language’s interface construct
to implement a Widget interface class to
enforce the necessary uniformity.

Defining the Widget Interface Class
To support callback, an AWT component

where the event originated has to be
extended or subclassed to hand off events
to the centralized event handler rather than
processing the event itself. The program-

mer supplies the application response code
by extending the Callbackable class, and
registers this code with the extended AWT
component. To simplify the identification of
the component that triggers the callback, it
is sometimes convenient for the program-
mer to assign a name to that component
that is retrievable at a later time. A Widget
should implement at least two methods:

public abstract void addCallback(
String callbackName,
Callbackable callback);
public abstract String getName();

Listing 1 shows the actual implementa-
tion of the Widget interface. Widget naming
is implemented as a protected variable and
can be assigned as a parameter in the con-
structor. This can be partially enforced only
by adding a constructor with just the name

parameter, which in essence calls the default
constructor and saves the widget name.

Implementing the Widget Interface
in AWT Button
Listings 2 and 3 show the enhanced Button
classes for Java 1.0 and 1.1, respectively.
Note that these classes differ from the ver-
sion presented in the Implementing Call-
back article only by requiring them to
implement the Widget interface. If the pro-
grammer inadvertently omits support for
widget name or callback registration, the
Java compiler flags these errors.

The MonthlyCalendar Class and
Building Composite Widgets

Using the Widget interface and widget-
ized AWT and other GUI components, it’s
very easy to build a suite of more complex
widgets. As an example, Listing 4 shows the
MonthlyCalendar class, which displays a
one-month calendar of the specified month
and year. Listing 5 shows the MonthlyCal-
endarTest program. Figure 1 shows how the
MonthlyCalendarTest program looks when
run. MonthlyCalendar is implemented as a
Widget. Note its addCallback method,
which essentially passes any registered
callback down to the Buttons representing
the days of the month. Note also that
because event handling is delegated to the
callback mechanism, MonthlyCalendar is
Java version-independent.

Conclusion
Java’s interface language construct makes it
easy to enforce uniformity of implementa-
tion of widget classes supporting callbacks.
By enforcing uniformity, the widget user is

guaranteed the existence of certain
widget attributes. This, in turn, makes
it easy to implement more complex
widgets based on standard AWT com-
ponents. Next month’s article will
introduce a far more complex widget
(a TreeViewer).

Download Source Code
Source code for this article can be

downloaded from http://www.sys-
con.com. A fully implemented version
containing the extended AWT code
and a WallCalendar class (built on top
of MonthlyCalendar) can also be

downloaded for a nominal cost from Wigitek
Corporation at www.wigitek.com.

About the Author
Daniel Dee has more than 10 years’ experience in
the development of GUI software toolkits, using X
Windows (versions 10 and 11) and Java. He is
currently the president of Wigitek Corporation, a
software development and consulting firm. He has
an MSEE from the University of the Philippines and
an MS in computer system engineering from the
University of Massachusetts.

GUI PROGRAMMING WITH JAVA

Widget-izing Java’s Graphical
User Interface Components

Using Java Interface Construct to Enforce Uniformity

by Daniel Dee

Figure 1: MonthlyCalendarTest program

Daniel@wigitek.com

55VOLUME: 3 ISSUE: 6 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

56 • VOLUME: 3 ISSUE: 6Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Object-oriented database platforms
offer several benefits. The first one I think
of is that I don’t have to write code to han-
dle the transformation of an object to a row
in a table. The object model is the data
model. Navigation from reference to refer-
ence is efficient because object access is in
the OO language itself. How complicated
that can get depends on your intent, your
design and the OODB platform you’re
using. Most Java API’s for OODBMS plat-
forms are maturing quickly, and there are
some interesting variations and parallels
forming.

ObjectStore is a physical page-based
implementation. This means that when an
object is referenced, a physical image of the
disk area that the object is stored on is
brought into memory. The physical disk
address becomes the object’s identifier.
Other OODBMS platforms, like Versant, use
logical models. Instead of bringing a page of

disk into memory, they use tree traversal to
find the object and bring it into memory.
There are good things relative to both para-
digms. ObjectStore allows (at the time of
this writing) one transaction per session
and one session per process.

Versant’s product allows multiple ses-
sions per process. Both allow multiple
threads in a session. Yet no matter what
sort of session model the platform uses,
whether it is a physical or logical imple-
mentation, or how implicit the transaction
boundaries become, we, the programmers,
must still be involved in transaction man-
agement. For instance, you may want to
cause a rollback based on a programmatic
exception and return an informative excep-
tion to the user/client.

Adding CORBA to the fray makes things
more complicated because there needs to
be some concept of coordination between
CORBA transactions and database transac-

tions. The patterns used to implement the
service can make it or break it. Three things
to pay close attention to going into the
problem are interface granularity, scaling
issues and use cases.

The granularity of the CORBA interface
can make all the difference in the complexi-

Transaction Management in OODB
Platforms and CORBA

by David Knox

:DBLoader

requestTransaction (int, boolean)

getAvailable()

:ODBTransaction
Broker

:ODBSemaphore
ImplementationStrategy :ODBSemaphore

set (Thread, int)

wait()

_addWaiter (ODBSemaphore)

:DBLoader

requestTransaction (int, boolean)

getAvailable()

:ODBTransaction
Broker

:ODBSemaphore
ImplementationStrategy :ODBSemaphore

set (Thread, int)

wait()

_addWaiter (ODBSemaphore)

OODBMS & CORBA

Figure 1: Object model

CORBACORNER

When is a transaction not a transaction? The con-
stant discussion over language objects versus
CORBA objects echoes another interesting
issue/question – is a CORBA transaction (e.g. a
CORBA request within a potentially nested set of
OTS-managed transactions) exactly the same as a
database object? Does an OTS transaction reflect
precisely one database transaction. In this issue
David Knox explains why the answer is "not nec-
essarily" with an in-depth discussion of transaction
management in object-oriented databases and in
CORBA.

Richard Soley
Editor, CORBACORNER
President and Technical Director of the
Object Management Group, Inc.

57VOLUME: 3 ISSUE: 6 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

ty of transaction coordination. Some inter-
face implementations are very fine-grained,
using accessor and mutator methods
defined in the IDL for each data member.
Others are more coarsely grained and deliv-
er structures of data to a client. The client
manipulates the data in the structure and
returns it to the interface.

Scaling issues are a beast in their own
right. Some applications achieve scaling by
horizontal partitioning using multiple
clones of the same CORBA service to dis-
tribute load. This is a means to push some
of the concurrency issues back into the
database engine because it implies having
several processes hitting the same data-
base. Others achieve scaling by vertical
partitioning in which services are built
using a per-method or per-client service.
This also implies multiple processes hitting
the same database.

It pays to understand your use cases in
depth. Some services manage read opera-
tions while others are built to manage write
operations. This directly addresses both
scaling and concurrency versus alleviating
concurrency issues as a result of address-
ing scaling.

It is certain, if you ever implement an
OODB with CORBA, you will use some
combination of the above paradigms. For
instance, you could implement a read-
only service that is horizontally parti-
tioned and is coarse-grained, but as you
plan your implementation, remember that
all affect concurrency. Study your use
cases carefully. Let granularity and scal-
ing fall in once your use cases are well
understood.

If you have a good conceptualization of
the previous issues, then the conceptual-
ization of transaction coordination should
follow. A CORBA transaction starts when

the client request enters the server’s
domain, and ends when the reply leaves the
server. Should the CORBA transaction and
the database transaction be parallel? If
your data structure is shallow and your
interface is fine-grained, the answer could
be yes. This would mean the CORBA imple-
mentation is a persistent object as well. But
if your data structure has associative
depth, then you probably shouldn’t make
the implementation objects persistent
objects and your interface should be
coarse grained. The benefits start at perfor-
mance and continue into maintenance. Con-
sider the implications if the acting CORBA
interface is associated with another CORBA
interface. If the CORBA transactions and
database transactions are parallel, you are
potentially stuck with a two-phase commit.
Thanks for playing.

There is no necessary relationship
between a CORBA transaction and a data-
base transaction. A CORBA transaction
could cause no database transaction or it
could be the precursor of many. But to relax
the relationship is to bring into question
how, in pattern, the CORBA object can be
decoupled from the persistent object. The
answer begins with a concept called “Per-
sistence Aware.” ObjectStore implements
the idea directly. But conceptually an
object that is persistence-aware is an aggre-
gate of persistence-capable objects. It is
aware of which objects in its immediate
membership are persistent. Control of data-
base transactions begins at this point, one
layer behind the CORBA interface.

If you intend to pass persistent data to
your clients via a CORBA interface, then
CORBA structures are necessary. In gener-
al, it is not a good idea to make your CORBA
structures persistent. Each persistent
object contains one transient CORBA struc-

ture. The structure is declared in the per-
sistent object as transient and the persis-
tent object is responsible for moving data
elements back and forth before and after a
database event. Most vendors provide
hooks (Versant will by the end of the year)
in persistence-capable objects that the
database engine can call when events, like a
fetch or a flush, occur. ObjectStore defines
postInitializeContents and preFlushCon-
tents methods for every persistence-capa-
ble class. Both are there to be overridden.
The pattern of containment and the hooks
allow easy mapping to occur automatically
between CORBA structure and persistent
object.

When a client calls into the object via
the CORBA interface, the CORBA structure
is returned. If the data is fresh, there is
potentially no database transaction neces-
sary. The structure is a cache that is
refreshed within the boundaries of a data-
base transaction. The database engine will
call the preFlush method when the data is
being saved, and it will call the postInitial-
ize method when the data is fetched. The
data will, in a sense, be transferred back
and forth automatically between its tran-
sient representation and its persistent rep-
resentation. The provision of methods
guaranteed to be called before and after
database events provides a hands-off envi-
ronment with respect to each transient
structure. Responsibility for starting and
committing the transaction should be
based on the data structure being
returned. It can lie in the persistence-aware
object or it can be pushed back into the
persistence-capable objects. The base
heuristic is that the transaction boundary
is defined as late as practical. Postponing
the transaction could allow you to avoid
the transaction altogether. Avoidance

:DBLoader :ODBTransaction
Broker

:ODBSemaphore
ImplementationStrategy :ODBSemaphore :ODBSemaphore

commitTransaction (ODBSemaphore)

decUser (ODBSemaphore)

notify()

addToStack (Object)

:DBLoader :ODBTransaction
Broker

:ODBSemaphore
ImplementationStrategy :ODBSemaphore :ODBSemaphore

commitTransaction (ODBSemaphore)

decUser (ODBSemaphore)

notify()

addToStack (Object)

Figure 2: Transaction request message trace

58 • VOLUME: 3 ISSUE: 6Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

could turn throughput into something
nearly nonmeasurable.

The issue of transaction control and
management becomes more complicated
when the service you’re building is multi-
threaded. When threads are implemented
well, the increase in performance makes
the cost of writing the code diminish
quickly, especially when using CORBA.
With the CORBA layer decoupled from the
database layer, the CORBA transactions
become relatively easy to implement, syn-
chronization being key. However, the data-
base transactions become a bit more com-
plicated because you’ve got n threads run-
ning though your objects’ accessors and
mutators. It will always be economical to
allow multiple threads into the same trans-
action. For instance, you could allow read
requests into a write transaction. Conse-
quently, you need to know when a transac-
tion is in progress and what sort (Read or
Write) of transaction it is. The thing to do
is to encapsulate transaction management
in a subsystem. Within it there needs to
be:
• An object that keeps track of the current

transaction state
• An object that queues and brokers the

transaction requests
• An object that can open, load and close

the database
• Pool management for the semaphores
• A background thread that pulls requests

from the broker and processes them.
When the thread asks the broker for a
transaction, what gets returned is a sort
of heavy semaphore. It contains every-
thing that the thread will need, from a
database perspective, to do its job.

:ODBTrans
Daemon

:ODBTransaction
State :ODBSemaphore

_checkForWriters ()

_checkForReaders ()

addUser (ODBSemaphore)

addUser (ODBSemaphore)

set (Thread, int)

setDatabase (Database)

notify()

set (Thread, int)

setDatabase (Database)

notify()

:ODBTrans
Daemon

:ODBTransaction
State :ODBSemaphore

_checkForWriters ()

_checkForReaders ()

addUser (ODBSemaphore)

addUser (ODBSemaphore)

set (Thread, int)

setDatabase (Database)

notify()

set (Thread, int)

setDatabase (Database)

notify()

DBLoader
(from OODBUtils)

ODBTransactionBroker
(from OODBUtils)

ODBTransactionState
(from OODBUtils)

ODBTransDaemon
(from OODBUtils)

Vector
(from java.util)

_myBroker

_transState
_trans

_self

_implstrat

_writerWaits _readerWaits
_readers

_state

_writers

_nextWaiter

1+

_transThread

Stack
(from java.util)

ODBSemaphoreImplementationStrategy
(from OODBUtils)

ODBSemaphore
(from OODBUtils)

Figure 3: End transaction message trace

Figure 4: Transaction processing message trace

59VOLUME: 3 ISSUE: 6 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Object pool management consists of a
stack or queue and a strategy to allocate
new semaphores to storage in case of fault.
Semaphores are not created and destroyed
per demand. They are pooled for reuse. The
ImplementationStrategy is the manager of
the pool.

The DBLoader is responsible for starting
things up. It has a static instance() method
so it is easily available in the process. It cre-
ates the TransactionBroker. All requests for
a transaction and subsequent transaction
calls come through the DBLoader.

The TransactionBroker is the middle
manager. It creates two vectors to keep
read and write requests separate. Because
there is a break in the operation
sequence, there is a hashtable to store
exceptions in. If there is an exception
while the request is being processed, it is
placed in the hashtable. The requesting
thread will check the hashtable after its
notify() is called from TransactionState.
TransactionBroker creates the Transac-
tionState and subsequently the TransDae-
mon. When a request is received, it is
manifested in the form of the ODBSema-
phore.

The TransactionBroker requests a sema-
phore from the ImplementationStrategy
and initializes it with a reference to the
requesting thread and the type of transac-
tion that is being requested. The Transac-
tionBroker adds the semaphore to the
appropriate vector and calls wait () on the
semaphore. TransactionBroker also has
the job of notifying TransDaemon when a
transaction ends.

The TransDaemon is derived from
java.lang.Thread. TransDaemon is given ref-
erences to the request vectors and works
both from the front. The current heuristic
gives write requests priority over read
requests. If it finds nothing in either vector,
it yields. If a request is found, then a check
is made with the TransactionState to find
out if there is already a transaction started.
If the system is in a transaction and the new
request is a writer, call wait(). Here the Dae-
mon waits to be notified by the Transac-
tionState that the transaction has ended.
Under all conditions the logic proceeds to
three rules:
1. If the system is not in a transaction state

and there is a writer, pass the request to
TransactionState to start the transaction.
This rule starts a write transaction.

2. If the system is in a transaction state and
there is no writer, pass the request to
TransactionState to join the transaction.

3. If the system is not in a transaction state
and there is no writer, pass the request
to TransactionState to start the transac-
tion. This rule starts a read transaction.
The TransactionState is, as one would

suspect, a state machine: it approves a
request. When the TransDaemon pulls a
request from one of the request vectors,
eventually the request will go to Transac-
tionState to either join the current transac-
tion or to start a new one. When that hap-
pens, the TransactionState notifies the
waiting semaphore/request and it com-
pletes its trip back through the Transac-
tionBroker.

For general implementation, there are
holes in the rules. In a mixed-transaction-
type situation there is an apparent proba-
bility of starving readers out. One exten-
sion I’ve been considering is how to always

allow readers into a write transaction. That
way, if there is a steady stream of write
requests, the readers can still join in the
game. Readers are allowed in until the cur-
rent writer intends to commit. At that point,
transaction management calls for a check-
point. All waiting readers are queued until
the next transaction starts up. It is impor-
tant that the clients are completely uncou-
pled from the database and see only
CORBA. The database is loosely coupled to
CORBA and sees only idl-defined, behavior-
less structures. CORBA interfaces are
uncoupled from the database and see only
in-process calls that return idl-defined

Bristol
1/2 Ad

60 • VOLUME: 3 ISSUE: 6Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

structures. Another extension entails the
invention of a heuristic object that would
act as a transaction legislator. Other
objects involved in transaction processing
would ask the heuristic object what is
allowed. Answers come back in the form of
true or false.

I’ve described a pattern that is extensi-
ble and flexible. It provides a means to
uncouple the dependencies between an
OODB platform and CORBA, and places the
database functionality in the back of the
process. It will be interesting to see how it
evolves both in my domain and from the
perspective of other developers. Some
things, though, are not as flexible. No mat-
ter what OODB platform you choose, the
first things that must be done by all is to fall
into good design habits.

Analyze and understand your use
cases. If you can separate reads and writes
into different services, do so. It relieves
one concurrency factor. Analyze and
understand your scaling issues. Derive a

sense of how many clients there could be,
and interject into the consideration how
interactive your interface needs to be. If
the service you are building has a high
degree of interaction, the number of
clients becomes less meaningful. A few
clients can cause a great deal of traffic.
When you can, design your interface to
function in terms of structures versus fine-
grained accessors and mutators. It lessens
the degree of interaction.

About the Author
David Knox has a BS in Mathematics from
Metropolitan State College of Denver. He works for
Galileo International, Inc., developers of one of the
largest computerized airline reservations systems
in the world. David works in Infrastructure and
Middleware organization. His responsiblities include
Research & Development and the first deployment of
CORBA technology. You can reach David at
David.Knox@Den.Galileo.com.

PHONE, ADDRESS
& WEB DIRECTORY

CALL FOR SUBSCRIPTIONS

1800 513-7111
International Subscriptions

& Customer Service Inquiries
914 735-1900

or by fax: 914 735-3922

E-Mail: Subscribe@SYS-CON.com
http://www.SYS-CON.com

MAIL All Subscription Orders or
Customer Service Inquiries to

SYS-CON Publications, Inc.
39 E. Central Ave.

Pearl River, NY 10965 – USA

EDITORIAL OFFICES
Phone: 914 735-1900

Fax: 914 735-3922

ADVERTISING & SALES OFFICE
Phone: 914 735-0300

Fax: 914 735-7302

CUSTOMER SERVICE
Phone: 914 735-1900

Fax: 914 735-3922

DESIGN & PRODUCTION
Phone: 914 735-7300

Fax: 914 735-6547

Worldwide Distribution by
Curtis Circulation Company

739 River Road,
New Milford NJ 07646-3048

Phone: 201 634-7400

DISTRIBUTED in the USA by
International Periodical Distributors

674 Via De La Valle, Suite: 204
Solana Beach, CA 92075

Phone: 619 481-5928

SYS-CON
PUBLICATIONS

����
����
����

QQQQ
QQQQ
QQQQ

¢¢¢¢
¢¢¢¢
¢¢¢¢

DEVELOPER’S

JOURNAL

1997 JAVA Products & Services

& Internet Directory
Buyer’s GuideBuyer’s Guide

Java Developer’s Journal
http://www.JavaDevelopersJournal.com

Web-Pro Developer’s Supplement

National Java Learning Center, Inc.

JDJ Buyer’s Guide
JavaBuyersGuide.com

VRML Developer’s Journal
VRMLJournal.com

David.Knox@Den.Galileo.com

Listing 1.
public class MyPersistentObjectExample {

// NOTE: this is example code only
// Don't expect it to compile as is.

private int _foo;

private String _bar;

private transient
A_CorbaStruct _myCorbaStruct;

public MyPersistentObject(int foo,
String bar) {

this._foo = foo;

this._bar = bar;

_myCorbaStruct = new
A_CorbaStruct(foo, bar);

}

// The transient data is the working data

public void setFoo(int foo) {

_myCorbaStruct.foo = foo;

}
public void setBar(String bar) {

_myCorbaStruct.bar = bar;
}
// Clients use the transient data
// it is guaranteed to be current.

public int getFoo() {
return(_myCorbaStruct.foo);

}
public String getBar() {

return(_myCorbaStruct.bar);
}

public A_CorbaStruct
getPersistentObjectExampleAttrs() {

return(_myCorbaStruct);
}
public void

setPersistentObjectExampleAttrs(
A_CorbaStruct attrs) {

_myCorbaStruct = attrs;
}

public void postInitializeContents() {
// move persistent contents to tran-

sient
_myCorbaStruct = new A_CorbaStruct(

_foo, _bar);
}
public void preFlushContents() {

// Move transient contents to persistent
this._foo = _myCorbaStruct.foo;
this._bar = _myCorbaStruct.bar;

}

public void save() {
// This will force a flush
this._foo = this._foo;

}
}

61VOLUME: 3 ISSUE: 6 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

62 • VOLUME: 3 ISSUE: 6Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

NobleNet, Inc., Unveils
Nouveau™

(Southboro, MA) - NobleNet,
Inc., has announced the launch
of Nouveau, the industry’s first
distributed application devel-
opment environment designed
to automate the generation and
integration of diverse CORBA,
COM, Java and RPC-based
applications.

By supporting C, C++, Java,
ActiveX and 4GLs, Nouveau
enables IT organizations to
experience greater functionali-
ty, increased productivity and
improved performance without
retraining existing staff. Nou-
veau is currently priced at
$5,000, with its first shipment
scheduled for August 1998. For
more information, visit
NobleNet’s Website at
www.noblenet.com.

Compuware Corporation
Announces NuMega
DevPartner for Java
(Farmington Hills, MI) - Com-
puware Corporation has
announced NuMega DevPart-
ner for Java, a suite of develop-
ment tools
that automati-
cally detect,
diagnose and facilitate resolu-
tion of Java performance prob-
lems and runtime errors. Using
DevPartner for Java, develop-
ers can improve the perfor-

mance, reliability and delivery
time of Java applications and
components.

The first version of DevPart-
ner for Java will consist of
NuMega TrueTime Java Edition
and NuMega JCheck. DevPart-
ner for Java will be available in
July of 1998. The list price in
the U.S. is $599. For more infor-
mation, see Compuware’s Web-
site at www.compuware.com.

Simplicity for Java
(Stamford, CT) - Data Represen-
tations, Inc., has announced
the general availability of Sim-
plicity for Java™ a rapid appli-
cation design tool for Java 1.1,
which allows developers to

build Java applications and
applets interactively. Simplicity
features:
• The Code Sourcerer™ which

interviews the user to deter-
mine what should happen in
response to events and
writes the appropriate Java
source code

• An Integrated Design Environ-
ment (IDE) that organizes all
of the components of a pro-
ject

Simplicity is able to run on
any Java-enabled platform. Its
list price is $89. For more infor-
mation or a free tryout version,
check out www.datarepresenta-
tions.com.

Riverton Introduces
HOW 2.0 for Java
(Cambridge, MA) - Riverton
Software Corporation, a leading
provider of component-based
development technology for
developers of business applica-
tions, has announced the intro-
duction of HOW 2.0 for Java™.
This release offers a compo-
nent-modeling tool that works
with leading Java development
environments, including
Microsoft Visual J++ and
Sybase PowerJ.

HOW 2.0 for Java automati-
cally generates middle-tier
business components as Jav-
aBeans™ from developers’
applications models. These
components can use DCOM or

CORBA as their distribution
protocol, and can be modified
and elaborated in any Java-
enabled IDE. The list price for
HOW 2.0 begins at $2,995. For
more information, see Riverton
Software’s Website at
www.riverton.com.

Rogue Wave Software, Inc.,
Ships StudioJ
(Boulder, CO) - Rogue Ware
Software, Inc. has
announced that it’s
shipping StudioJ, a
new suite of Jav-
aBeans compo-
nents and class-
es that inte-
grates best-of-
breed technology
from its Stingray
division. In addi-
tion to being one of
the most complete
and flexible sets of
components and
classes for Java™
technology develop-
ment, StudioJ includes
full source code that
gives developers the abil-
ity to get “under the hood” and
also to add customized exten-
sions.

StudioJ is available from
Rogue Wave Software for $995.
For more information, call
Rogue Wave Software tollfree at
800 487-3217 or visit their Web-
site at www.roguewave.com.

(San Francisco, CA) - Kuck &
Associates, Inc., has
announced the arrival of
Assure™, a new tool for
debugging multithreaded Java
applications. Assure is based
on breakthrough dynamic
analysis technology and
enables application develop-
ers to identify timing-related
problems in their Java source
code.

Until recently, develop-
ers of enterprise class
applications had very

few tools available to success-
fully identify race conditions,
deadlocks and other timing-
related bugs. Assure finds

these bugs automatically;
developers can spend more
time developing and less time
chasing bugs. Assure is easy to
use and requires no modifica-
tion of user source code.

Assure is available
directly from KAI for x86

platforms under Windows
NT, Windows95 and
Solaris operating sys-

tems for $495. For more
information, contact
assurej@kai.com or see KAI’s
Website at www.kai.com.

KAI Introduces New Multithreaded Java™ Debugging Tool

J Street Mailer™ Release Two Available
(Harrison, NY) - InnoVal Systems Solutions has released a new
production version of J Street Mailer, a full-function e-mail client
written entirely in Java. J Street Mailer supports both POP3 and
IMAP4 mail servers.

The J Street Mailer is
currently available for
$49. Java Lobby members
and students and fac-
ulty of accredited
institutions will
receive a discounted
price. Additional infor-
mation, including a com-
prehensive list of features and a
screen shot, may be found at
InnoVal’s home page at
www.innoval.com.

63VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Sales
Vision

64 • VOLUME: 3 ISSUE: 6Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Object Design Launches
Major Upgrade of Pure
Java, Pure Object Database
(Burlington, MA) - Object
Design, Inc., has announced
the availability of ObjectStore®
PSE Pro release 2.0 which is
designed for portability and
performance. ObjectStore PSE
Pro database management sys-
tem (DBMS) maximizes devel-
oper productivity for rapid
time-to-market and provides
high-performance data manage-
ment for a wide range of Java
applications and platforms.

A free 30-day trial version is
available from Object

Design’s Website. The
Developer Edition
costs $245 and an

end-user costs
$95. ObjectStore
PSE Pro runs on

any Java-support-
ed platform
(including Win-

dows, Unix, OS/2
and Macintosh).

For more information,
visit Object Design at
www.objectdesign.com.

Quadbase Systems Inc.
ships PulsePoint
(Santa Clara, CA) - Quadbase
Systems Inc. has begun ship-
ment of PulsePoint 1.1, a Web-
based report/charting tool tar-
geting the business intelligence
market. PulsePoint is a query-
tool/report-writer that allows
users to do adhoc as well as

canned querying and reporting
using a Java-enabled Web
browser.

Some of its features include
a graphical query builder,
report designer, query/report
engine, interactive graphic
chart designer/viewer, menu
designer, administration mod-
ule and a Windows-style drag
and drop dynamism.

The list price starts at
$2,000. For more information,
see Quadbase’s Website at
www.quadbase.com.

An In-Depth Look at
Java Security
(Sebastopol, CA) - O’Reilly has
announced the release of the
book Java Security by Scott
Oaks, which explores Java
security for Java programmers.
It includes detailed coverage
of:
• Security managers
• Class loaders
• The access controller
• The Java security package
• Message digests, certificates

and digital signatures
• The differences between ver-

sions 1.1 and 1.2
Java Security helps the pro-

grammer master the tools Java
provides; programmers deploy-
ing software written in Java
must know how to grant class-
es the privileges they need
without granting privileges to
untrusted classes.

For more information, see
O’Reilly’s Website at

http://java.oreilly.com.

Tadpole Technology Target-
ing North American Utilities
(Cambridge, England) - Tadpole
Technology has announced the
appointment of GeoData Solu-
tions, Inc., as reseller for its
Java-based geographic informa-
tion systems (GIS) solution in
the North American market.

Tadpole’s Java solution,
Designated Cartesia Gateway,
provides utilities with enter-
prise-wide access to corporate
GIS from any computer fitted
with a Java-enabled browser.
The applied use of Cartesia as
a vehicle to access corporate
GIS throughout an organization
provides signiciant gains in
workforce efficiency, service
levels, and cuts in IT budgets.

GeoData Solutions’ core
operations span project plan-
ning, data modeling, migration
strategy development and
Smallworld GIS training.

Designated Cartesia Gate-
way offers powerful perfor-
mance, flexibility, integration
and connectivity, platform
independence, ease of use and
low cost of ownership, and is
highly configurable.

For more information, find
Tadpole Technology on the
Web at www.tadpole.com and
GeoData Solutions at www.geo-
data-gis.com.

(Fremont, CA) - Metamata,
Inc., has announced the avail-
ability of the first four compo-
nents of its integrated,
advanced productivity and
quality suite that comple-
ments and enhances standard
visual development environ-
ments (IDE’s) for building mis-
sion-critical applications in
Java. Metamata Browse™ is
an intelligent Java
source code browser.
Metamata Debug™ com-
bines a Java com-
mand line inter-
preter and a
fully
func-
tional

debugger specialized for
debugging large-scale applica-
tions. Metamata Audit™ is a
source code quality analysis
tool that evaluates code for
programming errors and style
issues against standard Java
principles and coding prac-
tices. Metamata Metrics™ cal-
culates static metric measure-
ments incrementally on differ-

ent portions of
Java source code.

A basic ver-
sion of

Metamata
Browse is free; an

advanced version is
$95. Metamata Debug is

$250, Metamata Audit is $395
and Metamata Metrics basic

version is $500 while the
advanced version is $995.
For more information, visit

the company’s Website at
www.metamata.com.

Metamata Launches Components
for Large-Scale Java™ Development

(Burlington, MA) - Novera Soft-
ware, Inc., the leader in serv-
er-side Java, has announced
that the company has part-
nered with The Allied Group
to create Java kiosk applica-
tions for the retail market
based on Novera’s new jBusi-
ness™ Solutions. This rela-
tionship will allow The Allied
Group, a developer and inte-
grator of interactive software
applications, to offer their cus-
tomers networked kiosk appli-

cations that are easily devel-
oped, deployed and managed
across the enterprise.

The strength of the prod-
uct lies in its capa-
bility to
improve
the quality
of server-
side Java
application
development,
deployment and
management across

the enterprise. jBusiness facili-
tates development of intranet,
extranet, Internet and plat-
form-independent applications
on various hardware architec-

tures, operating
systems and dis-
parate object
models. For more
information, visit
Novera’s Website

at www.novera.com
or call tollfree

1-888-NOVERA1.

Novera™ and The Allied Group Partner to Offer Unique Interactive Retail Solutions

65VOLUME: 3 ISSUE: 6 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

66 • VOLUME: 3 ISSUE: 6Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Many developers are discovering that
the front end of a Web application can be a
dangerous trap. Sure, it seems simple at
first: just grab one of the HTML application
development tools and knock out a quick
front end and connect to the tool’s back
end. This works well as long as the applica-
tion remains a simple HTML application
that isn’t going anywhere.

But, developers are quickly discovering
that what begins, say, as a simple little
intranet application becomes so popular
that suddenly people are clamoring to put it
onto the extranet, and even on the Internet
where it can be accessed by the general
public. As soon as the developer tries to
redeploy the application, he or she falls into
the front-end trap. The nice, clean, simple
little HTML front end connecting to some
tool’s proprietary Web application back end
can’t support the functionality required for
new deployment options.

Suddenly, you need a lot of functionality
that you didn’t think you would need when
the application was first deployed. This
extra functionality calls for Java on the front
end, but the simple HTML front end doesn’t
effectively support Java. You’re trapped.
The only recourse is to rebuild the entire
application.

In other cases, the developers use a
Java front end. Often times, the chosen
architecture/tools do not support an HTML
front end very well, which you still need. In
addition, the resulting solution will not be
open and/or scalable. In yet other situa-
tions, we find that the back-end solution
for the Java and the HTML front end are dif-
ferent, which leads to a situation where the
developers cannot reuse business objects
on the server.

Developers fall into such traps when
they don’t think ahead and allow for multi-
ple deployment options. The various
options—Internet, intranet, extranet—serve
different audiences, have different require-
ments and must reflect the different com-
puting environments. For example, develop-
ers have better knowledge of and, possibly,
control over the desktop systems that will
connect to an intranet application. Similarly,
developers can count on intranet and
extranet users to have faster network con-
nections than dial-up Internet users. When
dealing with intranet/extranet users, the
state capabilities and interaction of a Java

front end are both feasible and welcome.
HTML, on the other hand, has the advantage
when dealing with dial-up users on the Inter-
net.

The plurality of end-user interface types
will become even more important over time.
End-users will want to access anything from
anywhere. This means access from the
office, the home, a hotel, a taxicab or a
plane. They’ll be using Windows'98, Mac,
PalmPilot, Windows CE, WebTV, etc. Devel-
opers can’t fall into the trap of having to
completely rebuild the front-end application
for each deployment scenario.

Fortunately, there is a solution. You need
to support both Java and HTML front ends
and variations of each depending on the
case (e.g., DHTML). And the way to do that
is to opt for a Java application server built
on top of open platforms. Java application
servers are extremely well suited for the
Java/HTML front end, since a Java front end
to a Java application server is an apples to
apples connection. In addition, the servlet
API with the JDK provides very robust
HTML support. Java Server Pages makes it
even stronger while remaining an open solu-
tion. Developers are praising the servlet API
for its support for all popular Web Servers
and its extremely effective architecture and
design.

My preferred approach is to use Java
Application Server with CORBA and open
platform services, plus an HTML front end
using standard servlet and JSP APIs via
HTTP, and a Java front end via IIOP protocol.
Using open platform services such as Java
Transaction Service (JTS) allows the devel-
opment team to select a service implemen-
tation. Anything else is either not support-
ive of intra/extra/Internet combinations or
based on proprietary architectures that will
shut down your options, or both.

In the end, developers cannot simply
build the front end of the Web application
for the immediate problem at hand. We
know that Web applications take on a life of
their own. The developer might be building
an intranet application this month but with-
in a few months the application may need to
be deployed on an extranet or even the
Internet. Unless you want to continuously
rebuild applications to run with different
front ends under different deployment
options, you must build front-end flexibility
into the application from the start.

Avoiding the Web Application

Front End Trap

by Java George

Java George is George Kassabgi, director of
developer relations for Progress Software’s
Apptivity Product Unit.

THE GRIND

A “nice, clean, simple

little HTML front end

connecting to some

tool’s proprietary Web

application back end?”

Think again!

Joe@sys-con.com

http://www.JavaDevelopersJournal.com 67Java DEVELOPER’S JournalVOLUME:1 ISSUE: 5 •

Ad

68 Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

KL Group
Full Page Ad

• VOLUME: 3 ISSUE: 6

